

Cilindri elettromeccanici compatti Serie 3E

Taglie 20, 32

- » Flessibilità
- » Semplicità di utilizzo
- » Tempi di set-up ridotti
- » Incremento dell'efficienza e della produttività delle macchine

I cilindri Serie 3E sono attuatori elettrici con stelo che combinano una vite e un motore per generare un movimento lineare preciso. Offrono un'alternativa ai cilindri pneumatici con tutti i vantaggi degli attuatori elettrici in termini di velocità, semplicità di settaggio dei parametri e flessibilità nella gestione di diversi formati. Il design compatto garantisce una facile integrazione nel layout della macchina, senza un declassamento delle prestazioni. Robusti e veloci, questi attuatori sono ideali per applicazioni multi-posizione e possono essere utilizzati con sensori di prossimità esterni per le operazioni di homing o per qualsiasi funzione di extra corsa.

Inoltre, la Serie 3E può essere fornita con il motore già assemblato, riducendo ulteriormente i tempi di messa in servizio e di cablaggio. I cilindri elettromeccanici Serie 3E sono la soluzione ideale per le applicazioni industriali che richiedono un rapido cambio formato o numerosi cicli di produzione. Grazie alla loro precisione, affidabilità e flessibilità, questi cilindri sono ideali per l'impiego nelle linee di assemblaggio, nella movimentazione di materiali o in impianti di confezionamento.

CARATTERISTICHE GENERALI

cilindro elettromeccanico con vite a ricircolo di sfere Costruzione Design a profilo con fori filettati basato su ISO 15552 **Funzionamento** attuatore multi-posizione con movimento lineare ad alta precisione Taglie 20.32 Corse (min - max) 10 ÷ 500 mm Funzione antirotazione con pattini antifrizione in tecnopolimero Fissaggio a flangia anteriore, con piedini, griffe o cerniera anteriore / posteriore / snodata Montaggio motore in linea e in parallelo 0°C ÷ 50°C Temperatura d'esercizio Temperatura di stoccaggio -20°C ÷ 80°C Grado di protezione IP40 Lubrificazione Non necessaria. Sul cilindro viene eseguita una pre-lubrificazione. Ripetibilità

Ciclo di lavoro 100% (se fornito con motore montato il duty cycle è in relazione al motore scelto)

Max angolo di rotazione

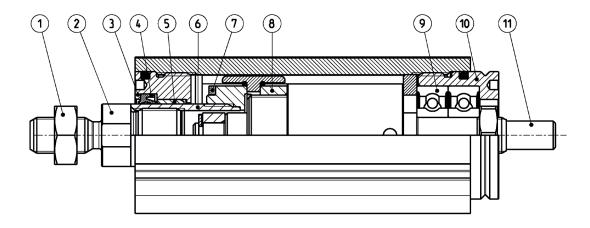
Utilizzo con sensori esterni cave su quattro lati per sensori modello CSD

Prodotti destinati all'industria nerali di vendita disponibili sul sito www.camozzi.com

ESEMPIO DI CODIFICA

3E	020	BS	0100	P10	M	
3E	SERIE					
020	TAGLIA 020 = 20 032 = 32					
BS	TRASMISSIONE BS = vite a ricircolo di sfere					
0100	CORSA Vedere tabella caratteristic	the meccaniche				
P10	PASSO DELLA VITE P03 = 3 mm P10 = 10 mm					
M	TIPO COSTRUTTIVO M = maschio F = femmina					
	STELO ESTESO () = stelo più lungo di _	mm				

CARATTERISTICHE MECCANICHE


CARATTERISTICHE MECCANICHE					
		Taglia 20	Taglia 20	Taglia 32	Taglia 32
Passo "P"	[mm]	3	10	3	10
Coefficiente carico dinamico "C"	[N]	2100	1875	2800	2500
Carico medio (A)	[N]	177	236	236	315
Coppia max applicabile all'albero della vite	[Nm]	0,42	1,41	0,53	1,77
Forza max applicabile*	[N]	800	800	1000	1000
Velocità max lineare cilindro *	[m/s]	0,4	1,3	0,4	1,3
Velocità max di rotazione dell'albero del cilindro	[rpm]	8000	8000	8000	8000
Accelerazione max cilindro	[m/s²]	25	25	25	25
Corsa min	[mm]	10	25	10	25
Corsa max	[mm]	300	300	500	500

⁽A) Valore riferito ad una percorrenza di 5000 Km (vedi grafici "Durata del cilindro in funzione della forza media applicata").

* Questo parametro varia al variare della corsa (vedi grafici "Velocità massima del cilindro in funzione della corsa").

C CAMOZZI

MATERIALI SERIE 3E

ELENCO COMPONENTI		
PARTI	MATERIALI	
1. Dado stelo	Acciaio zincato	
2. Giunto anteriore stelo	Acciaio inox	
3. Capsula anteriore	Lega di alluminio anodizzato	
4. Guarnizione stelo	Poliuretano	
5. Boccola	Tecnopolimero	
6. Stelo	Acciaio inox	
7. Magnete	Plastoneodimio	
8. Elemento di guida vite BS	Lega di alluminio	
9. Cuscinetto	Acciaio	
10. Capsula posteriore	Lega di alluminio anodizzato	
11. Vite BS	Acciaio	

ACCESSORI DISPONIBILI PER LA SERIE 3E

Snodo sferico maschio Mod. GY

Dado stelo Mod. U

Spinotto Mod. S

Cerniera con snodo sferico Mod. R

Giunto compensatore Mod. GKF

Snodo sferico Mod. GA

Supp. 90° per cerniera femmina Mod. ZC

Combinazione di accessori Mod. C+L+S

Flangia anteriore Mod. D-E

Snodo autoallineante Mod. GK

Ancoraggio a piedini Mod. B-3E

Cerniera femmina posteriore Mod. C e C-H

Forcella Mod. G

Cerniera maschio posteriore Mod. L

Ancoraggio laterale a griffa Mod. BG

Kit per connessione assiale Mod. AM

Kit per connessione in parallelo Mod. PM

Ancoraggio a cerniera anteriore lamata Mod. FN

Supporto per cerniera Mod. BF

CALCOLO DELLA VITA DEL CILINDRO

Per effettuare un corretto dimensionamento del cilindro 3E occorre prendere in considerazione alcuni fattori.

Tra questi i più importanti sono:

- Dinamica del sistema
- Ciclica di lavoro e pause
- Ambiente di lavoro
- Richieste prestazionali generali: ripetibilità, accuratezza, precisione, ecc.

CALCOLO DELLA DURATA IN ROTAZIONI

dove

L_r = Durata del cilindro in numero di rotazioni della vite a BS

C = Coefficiente carico dinamico del cilindro [N]

F_m = Forza assiale media applicata [N]

f_w = Coefficiente di sicurezza in funzione delle condizioni di lavoro

(vedere tabella sottostante)

$$L_r = \left(\frac{C}{F_m \cdot f_w}\right)^3 \cdot 10^6$$

CALCOLO DELLA DURATA IN km

dove:

L_{km} = Durata del cilindro in chilometri [km]

p = passo della vite a BS [mm]

$$L_{km} = \frac{L_r \cdot p}{10^6}$$

CALCOLO DELLA DURATA IN ORE

dove:

L_h = Durata del cilindro in ore

n_m = numero di giri medio della vite a BS [rpm]

$$L_h = \frac{L_r}{n_m \cdot 60}$$

ACCELERAZIONE [m/s²]	VELOCITA' [m/s]	CICLO DI LAVORO	COEFFICIENTE f _w
< 5,0	< 0,5	< 35%	1,0 ÷ 1,25
5,0 ÷ 15,0	0,5 ÷ 1,0	35% ÷ 65%	1,25 ÷ 1,5
> 15,0	> 1,0	> 65%	1,5 ÷ 3,0
	< 5,0 5,0 ÷ 15,0	<5,0 <0,5 5,0 ÷15,0 0,5 ÷1,0	< 5,0 < 0,5 < 35% 5,0 ÷ 15,0 0,5 ÷ 1,0 35% ÷ 65%

ANALISI DEL CICLO DI LAVORO E DELLE PAUSE DEL SISTEMA

L'analisi del ciclo di lavoro e delle pause a cui si sottopone il sistema è fondamentale per ricavare i carichi medi assiali Fm e il numero di giri medio nm agenti sul cilindro. Il ciclo di lavoro solitamente è composto da fasi e per ogni singola fase possiamo avere accelerazione, velocità costante e decelerazione

Fm = CALCOLO DELLA FORZA ASSIALE MEDIA APPLICATA

nm = CALCOLO DEL NUMERO GIRI MEDIO

La tabella sotto riportata serve per riepilogare i valori di accelerazione, velocità e decelerazione per ogni fase.

$$F_{m} = \sqrt[3]{\frac{(F_{a1}{}^{3} \cdot n_{a1} \cdot t_{a1}) + (F_{vc1}{}^{3} \cdot n_{vc1} \cdot t_{vc1}) + (F_{d1}{}^{3} \cdot n_{d1} \cdot t_{d1}) + \dots + (F_{an}{}^{3} \cdot n_{an} \cdot t_{an}) + (F_{vcn}{}^{3} \cdot n_{vcn} \cdot t_{vcn}) + (F_{dn}{}^{3} \cdot n_{dn} \cdot t_{dn})}{(n_{a1} \cdot t_{a1}) + (n_{vc1} \cdot t_{vc1}) + (n_{d1} \cdot t_{d1}) + \dots + (n_{an} \cdot t_{an}) + (n_{vcn} \cdot t_{vcn}) + (n_{dn} \cdot t_{dn})}}$$

$$n_m = \left. \left\{ \frac{(n_{a1} \cdot t_{a1}) + (n_{vc1} \cdot t_{vc1}) + (n_{d1} \cdot t_{d1}) + \ldots + (n_{an} \cdot t_{an}) + (n_{vcn} \cdot t_{vcn}) + (n_{dn} \cdot t_{dn})}{t_{a1} + t_{vc1} + t_{d1} + \ldots + t_{an} + t_{vcn} + t_{dn}} \right\}$$

		F [N]	n [rpm]	tempo %	
FASE 1	Accelerazione	Fa1	na1	ta1	
	Velocità costante	Fvc1	nvc1	tvc1	
	Decelerazione	Fd1	nd1	td1	
FASE 2	Accelerazione	Fa2	na2	ta2	
	Velocità costante	Fvc2	nvc2	tvc2	
	Decelerazione	Fd2	nd2	td2	
FASE "n -1"	Accelerazione	Fan-1	nan-1	tan-1	
	Velocità costante	Fvcn-1	nvcn-1	tvcn-1	
	Decelerazione	Fdn-1	ndn-1	tdn-1	
FASE "n"	Accelerazione	Fan	nan-1	tan-1	
	Velocità costante	Fvcn	nvcn-1	tvcn-1	
	Decelerazione	Fdn	ndn-1	tdn-1	
	TOTALE			100%	

ESEMPIO APPLICATIVO - Noti i seguenti dati:

 $F_{d1}=54\,N;$ Fase 1 $F_{a1} = 142 N;$ $F_{vc1} = 98 N;$ $n_{vc1}=1260\,rpm;$ $n_{d1} = 630 \, rpm;$ $n_{a1} = 630 \ rpm;$ $t_{a1} = 0.7 \%;$ $t_{d1} = 0.7 \%;$ $t_{vc1} = 12,9 \%;$ $F_{vc2}=589\,N;$ $F_{a2} = 616 N;$ $F_{d2} = 562 N;$ Fase 2 $n_{a2} = 450 \ rpm;$ $n_{vc2} = 900 \, rpm;$ $n_{d2}=450\,rpm;$ $t_{a2} = 4.8 \%;$ $t_{vc2} = 33,3 \%;$ $t_{d2} = 4.8 \%;$ $F_{a3} = 997 N;$ $F_{vc3} = 981 \, N;$ $F_{d3} = 965 N;$ Fase 3 $n_{vc3} = 480 \ rpm;$ $t_{vc3} = 28,6 \%;$ $n_{d3} = 240 \ rpm;$ $t_{d3} = 7,1 \%;$

 $n_{a3} = 240 \ rpm;$ $t_{a3} = 7,1 \%;$

in questo modo $K_1 = (F_{a1}^3 \cdot n_{a1} \cdot t_{a1}) + (F_{vc1}^3 \cdot n_{vc1} \cdot t_{vc1}) + \left(F_{d1}^3 \cdot n_{d1} \cdot t_{d1}\right)$ $n_1 = (n_{a1} \cdot t_{a1}) + (n_{vc1} \cdot t_{vc1}) + (n_{d1} \cdot t_{d1})$ $T_1 = t_{a1} + t_{vc1} + t_{d1}$ è possibile
$$\begin{split} K_2 &= (F_{a2}^3 \cdot n_{a2} \cdot t_{a2}) + (F_{vc2}^3 \cdot n_{vc2} \cdot t_{vc2}) + (F_{d2}^3 \cdot n_{d2} \cdot t_{d2}) \\ K_3 &= (F_{a3}^3 \cdot n_{a3} \cdot t_{a3}) + (F_{vc3}^3 \cdot n_{vc3} \cdot t_{vc3}) + (F_{d3}^3 \cdot n_{d3} \cdot t_{d3}) \end{split}$$
determinare: $n_2 = (n_{a2} \cdot t_{a2}) + (n_{vc2} \cdot t_{vc2}) + (n_{d3} \cdot t_{d3})$ $T_2 = t_{a2} + t_{vc2} + t_{d2}$ $T_3 = t_{a3} + t_{vc3} + t_{d3}$ $n_3 = (n_{a3} \cdot t_{a3}) + (n_{vc3} \cdot t_{vc3}) + (n_{d3} \cdot t_{d3})$

Concludendo $F_m = \sqrt[3]{\frac{(K_1 + K_2 + K_3)}{(n_1 + n_2 + n_3)}} = 596,64 \, N$ sappiamo che: $n_m = \frac{n_1 + n_2 + n_3}{T_1 + T_2 + T_3} = 685,7 \ rpm$

		F [N]	n [rpm]	tempo %	
FASE 1	Accelerazione	142	630	0,7	
	Velocità costante	98	1260	12,9	
	Decelerazione	54	630	0,7	
FASE 2	Accelerazione	616	450	4,8	
	Velocità costante	589	900	33,3	
	Decelerazione	562	450	4,8	
FASE 3	Accelerazione	997	240	7,1	
	Velocità costante	981	480	28,6	
	Decelerazione	965	240	7,1	
	TOTALE			100,0	

CALCOLO DELLA COPPIA MOTRICE [Nm]

F_A = Forza totale agente dall'esterno [N]

p = passo della vite [mm]

 η = rendimento

C_{M1} = Coppia motrice dovuta ad agenti esterni [Nm]

$$C_{TOT} = C_{M1} + C_{M2} + C_{M3}$$

$$C_{M1} = \frac{F_A \cdot p}{2\pi \cdot 1000} \cdot \frac{1}{\eta}$$

 $J_{TOT} = (J_F + J_V) \cdot 10^{-6}$

 $J_V = K_V \cdot C$

J_{TOT} = Momento d'inerzia degli elementi rotanti [kg⋅m²]

J_E = Momento d'inerzia degli elementi rotanti

a lunghezza fissa [kg·mm²]

J_v = Momento d'inerzia degli elementi rotanti

a lunghezza variabile [kg·mm²]

K_v = Coefficiente d'inerzia degli elementi rotanti

a lunghezza variabile [kg·mm²/m]

C = Corsa stelo [mm]

 $\dot{\omega}$ = accelerazione angolare [rad/s²]

a = Accelerazione lineare della vite [m/s²]

C_{M2} = Coppia motrice dovuta ad elementi rotanti [Nm]

 $\dot{\omega} = \frac{a \cdot 2\pi \cdot 1000}{p}$

 $C_{M2} = J_{TOT} \cdot \dot{\omega} \cdot \frac{1}{\eta}$

 F_{TT} = Forza generata dalla traslazione

dei componenti traslanti [N]

F_{TF} = Forza generata dalla traslazione dei componenti traslanti a lunghezza fissa [N]

F_{TV} = Forza generata dalla traslazione dei componenti traslanti

a lunghezza variabile [N] m_{C1} = Massa elementi traslanti a lunghezza fissa [kg]

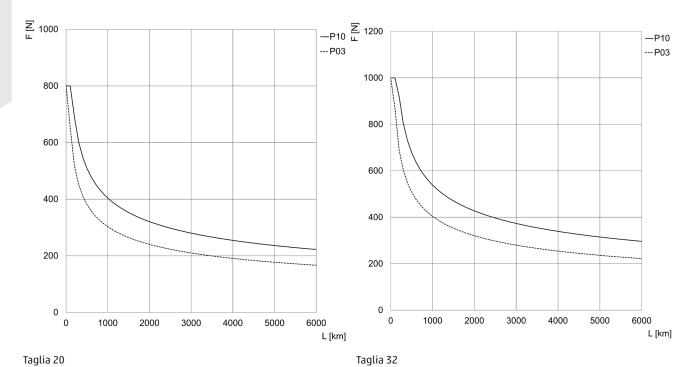
K_{TV} = Coefficiente di massa elementi traslanti

a lunghezza variabile [kg/mm]

C_{M3} = Coppia motrice dovuta ad elementi traslanti [Nm]

 $F_{TT} = F_{TF} + F_{TV}$

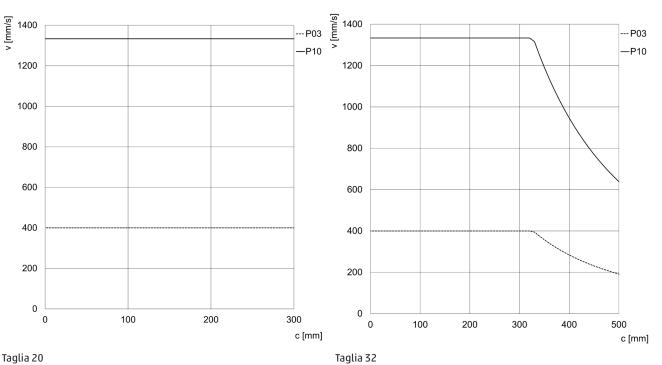
 $F_{TF}=m_{C1}\cdot a$


 $F_{TV} = K_{TV} \cdot C \cdot a$

 $C_{M3} = \frac{F_{TT} \cdot p}{2\pi \cdot 1000} \cdot \frac{1}{\eta}$

Valori di masse e momenti di inerzia fissi e rotanti componenti 3E											
Taglia	J _F [kg·mm²]	K_V [kg·mm ² /m]	m _{c1} [kg]	K _{tv} [kg/m]							
20	2,1	6,13	0,12	0,46							
32	2,1	6,13	0,13	0,46							

Durata del cilindro in funzione della forza assiale media applicata (T ambiente e condizioni di utilizzo standard)

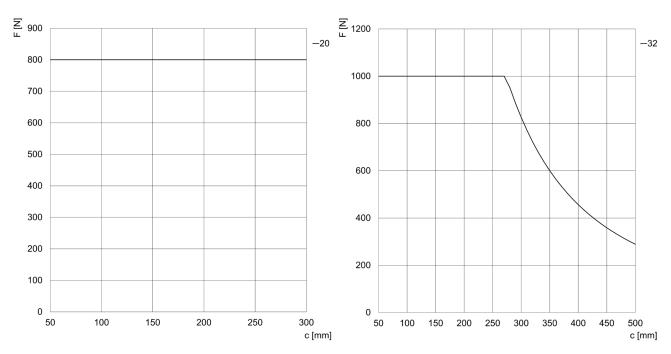


Taglia 20
F = forza assiale [N]
L = durata [km]
Curve calcolate con f_w = 1

F = forza assiale [N] L = durata [km] Curve calcolate con f_w = 1

CILINDRI ELETTROMECCANICI COMPATTI SERIE 3E

Velocità massima del cilindro in funzione della corsa


Taglia 20

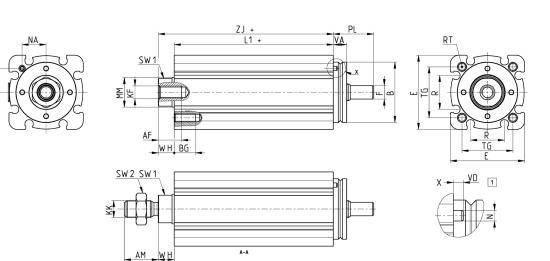
v = velocità [m/s] c = corsa [mm]

v = velocità [m/s] c = corsa [mm]

Forza massima del cilindro in funzione della corsa

Taglia 20 Taglia 32

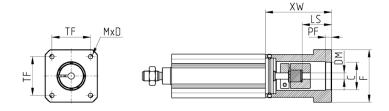
F = forza assiale statica [N] c = corsa [mm] F = forza assiale statica [N] c = corsa [mm]


Per corse superiori allo standard o situazioni con extra stelo contattare Camozzi.

CAMOZZI Automation

Cilindri Serie 3E

+ = sommare la corsa * Dimensione non conforme alla ISO 15552



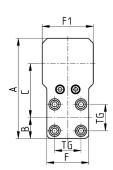
Taglia	AM	AF	_ø B ^(h8)	BG	Ε	gF(h8)	KF	KK	L1+	$_{g}MM$	R	RT	PL	SW1	SW2	TG	VA	VD	øN	NA	WH	ZJ+	Peso corsa 0 [g]	Peso corsa [kg/m]
20	16	11	28,5	10	35	5	М6	M8x1,25	75	14	16	M4	19	13	13	24	6,5	2	2,2	11,3	7,5	82,5	326	2,57
32	19	13	34	10	42	5	M8	M10x1,25	75	14	19	M5	19	13	17	32,5	5,5	2	2,2	13,5	7,5	82,5	430	3,64

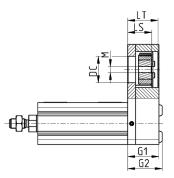
Kit per connessione assiale Mod. AM

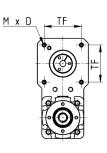
La fornitura comprende: 1x campana 1x giunto elastico 4x grani 4x viti collegamento motore

Mod.	Taglia	Motore	Protezione	_ø C	$_{g}DM$	TF	MxD	PF	F	LS	XW	Coppia nominale (Nm) ^(A)	Coppia massima (Nm) ^(B)	J[kgmm²]	Peso [g]	η
AM-3E-20-0017	20	MTS-17	IP40	22	5	31	Ø3,5x14,5	5	42	24	53	5	10	0,85	127	0,78
AM-3E-32-0023	32	MTS-23	IP40	38,1	6,35	47,14	M4x15	9	56,4	20	49	5	10	0,85	152	0,78
AM-3E-32-0024	32	MTS-24	IP40	38,1	8	47,14	M4x15	9	56,4	20	49	5	10	0,85	152	0,78
AM-3E-32-0100	32	MTB-010	IP40	30	8	31,8	M3x9	5	41,5	25	54	5	10	0,85	144	0,78

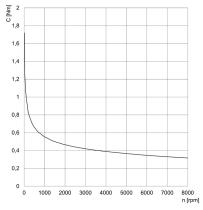
(A) Coppia applicabile in continuo, in condizioni di montaggio e funzionamento ideali. Per chiarimenti o approfondimenti riferirsi a service@camozzi.com

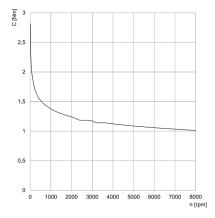

(B) Coppia applicabile per brevi inserzioni, in condizioni di montaggio e funzionamento ideali. Per chiarimenti o approfondimenti riferirsi a service@camozzi.com




Kit per connessione in parallelo Mod. PM

Il kit comprende:
1x coperchio anteriore
1x coperchio posteriore
2x pulegge
2x calettatori
1x cinghia dentata
3x grani
4x viti posteriori coperchio
2x-4x viti fissaggio coperchio
2x spine cilindriche
4x viti fissaggio motore



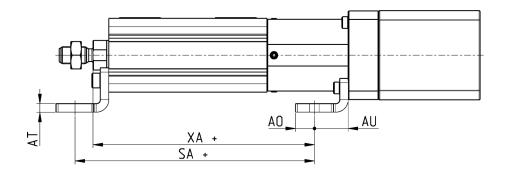

Mod.	Taglia	Motore	Protezione	Α	В	C	F	F1	TG	G1	G2	_ø DC	_ø Μ	LS	LT	TF	MxD	J[kgmm²]	Peso [g]	η
PM-3E-20-0017	20	MTS-17	IP40	83,5	17,5	45	35	42,5	22	26	29	22	5	20	25	31	M3x4,5	3,96	218	0,62
PM-3E-32-0023	32	MTS-23	IP40	116,5	21	67,5	42	56,5	32,5	28	31	38,1	6,35	19	26,5	47,14	M4x6	5,84	390	0,62
PM-3E-32-0024	32	MTS-24	IP40	116,5	21	67,5	42	56,5	32,5	28	31	38,1	8	19	26,5	47,14	M4x6	5,84	390	0,62
PM-3E-32-0100	32	MTB-010	IP40	87	21	45	42	42	32,5	28	31	30	8	19	26,5	31,82	M3x6	5,82	245	0,62

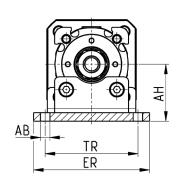
POTENZA TRASMISSIBILE KIT PM

PM-3E 20... C = Coppia [Nm] n = numero di giri al minuto [Rpm]

Le curve fanno riferimento ad un duty cycle del 70%

PM-3E 32... C = Coppia [Nm] n = numero di giri al minuto [Rpm]



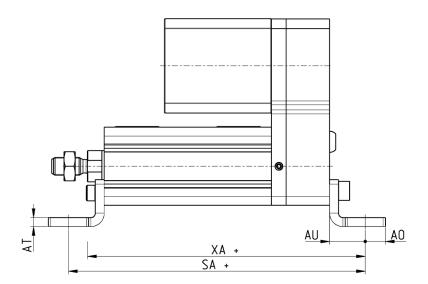

Ancoraggio a piedini Mod. B-3E-AM

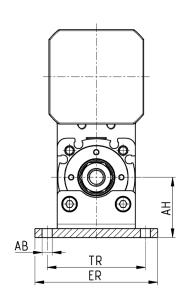
Materiale: acciaio zincato

La fornitura comprende: 2x piedini 4x viti

Mod.	Taglia	Compatibile con	SA	XA	AH	TR	AT	AU	AO	_ø AB	ER
B-3E-20-AM	20	AM-3E-20-0017	113,5	105	28	44	4	16	9	4,5	55
B-3E-32-AM-1	32	AM-3E-32-0023 / AM-3E-32-0024	109	100,5	36	52	4	16	9	4,5	62
B-3E-32-AM-2	32	AM-3E-32-0100	99	90,5	36	52	4	16	9	4,5	62

4x viti

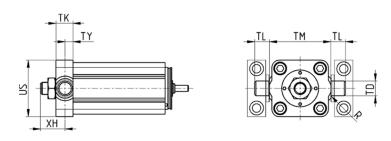



Ancoraggio a piedini Mod. B-3E-PM

Materiale: acciaio zincato

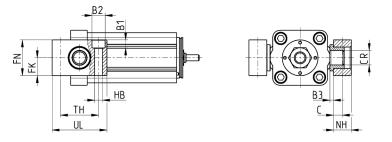
La fornitura comprende: 2x piedini

Mod.	Taglia	Compatibile con	SA	XA	АН	TR	AT	AU	AO	_ø AB	ER
B-3E-20-PM	20	PM-3E-20-0017	133	124,5	28	44	4	16	9	4,5	55
B-3E-32-PM	32	PM-3E-32-0023 / PM-3E-32-0024 / PM-3E-32-0100	135	126,5	36	52	4	16	9	4,5	62


CAMOZZI Automation

Ancoraggio a cerniera anteriore lamata Mod. FN

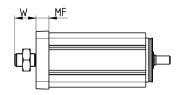
Materiale: acciaio zincato

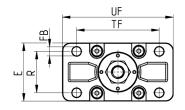

Mod.	Taglia	TK	TY	XH	US	TL	TM	_ø TD	R
FN-3E-32	32	14	6,5	20	46	12	50	12	1

Supporto per cerniera anteriore Mod. BF

Materiale: alluminio

La fornitura comprende: 2x supporti

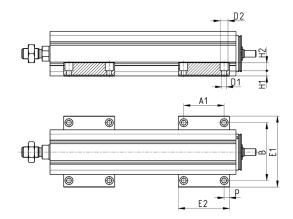

Mod. Taglia "CR	NH C	В3	TH	111	FIZ		D1		
		0.5	III	UL	FK	FN	B1	B2	HB
BF-32 32 12	15 7,5	3	32	46	15	30	6,8	11	6,6


Ancoraggio a flangia anteriore Mod. D-E

Materiale: alluminio

La fornitura comprende: 1x flangia 4x viti 4x rondelle

Mod.	Taglia	W	MF	TF	R	UF	E	FB
D-E-3E-32	32	16,5	10	64	32	80	45	7

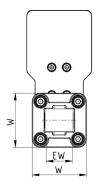


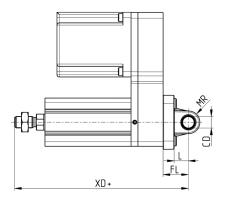
Ancoraggio laterale a griffa Mod. BG

Materiale: alluminio

La fornitura comprende: 2x griffe

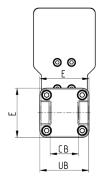
Mod.	Taglia	E1	E2	Р	A1	В	Vite	_ø D1	_ø D2	H1	H2	Peso [g]
BG-3E-20	20	60	48	5	38	47,5	M4	4,5	7,5	5	5,5	31
BG-3E-32	32	67	48	5	38	54,5	M4	4,5	7,5	5	7,5	35

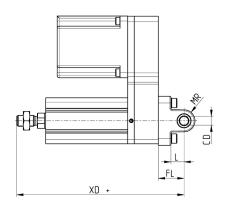

Ancoraggio a cerniera maschio posteriore Mod. L


Materiale: alluminio

La fornitura comprende: 1x cerniera maschio 4x rondelle (solo per taglia 32)

+ = sommare la corsa


Mod.	Taglia	_ø CD	L	FL	XD+	MR	E	EW
L-3E-20	20	8	14	20	151,5	8	34	16
L-3E-32	32	10	13	22	151,5	10	46	26

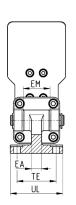

Ancoraggio a cerniera femmina posteriore Mod. C

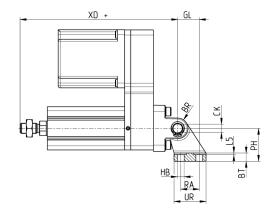
Materiale: alluminio

La fornitura comprende: 1x cerniera femmina 4x viti 4x rondelle

Mod.	Taglia	_ø CD	L	FL	XD+	MR	E	СВ	UB
C-3E-32	32	10	13	22	212	10	46	26	45

C₹ CAMOZZI

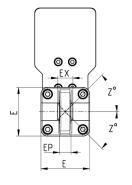

Supporto 90° per cerniera femmina Mod. ZC

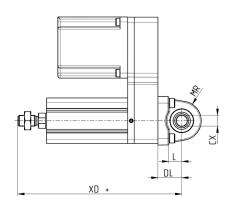


CETOP RP 107P Materiale: alluminio

La fornitura comprende: 1x supporto maschio

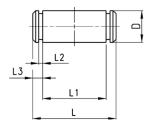
+ = sommare la corsa


Mod.	Taglia	_ø EB	_ø CK	øHB	XD+	TE	UL	EA	GL	L5	RA	EM	UR	PH	BT	BR
ZC-32	32	11	10	6,6	212	38	51	10	21	1,6	18	26	31	32	8	10


Ancoraggio a cerniera con snodo sferico Mod. R

La fornitura comprende: 1x cerniera snodata 4x viti 4x rondelle

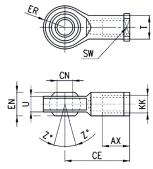
+ = sommare la corsa



Mod.	Taglia	_ø CX	L	DL	XN+	MS	E	EX	EP	Z
R-3E-32	32	10	12	22	212	18	45	14	10,5	4°

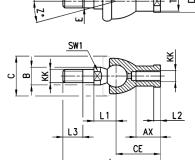
Spinotto Mod. S

La fornitura comprende: 1x spinotto (Inox 303) 2x Seeger (acciaio)


Mod.	Taglia	_g D	L	L1	L2	L3
S-32	32	10	52	46	1,1	3

Snodo sferico Mod. GA

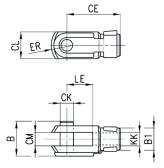
ISO 8139 Materiale: acciaio zincato



Mod.	Taglia	_ø CN	U	EN	ER	AX	CE	KK	_ø Τ	Z	SW
GA-20	20	8	9	12	12	16	36	M8x1,25	12,5	6,5	14
GA-32	32	10	10,5	14	14	20	43	M10x1,25	15	6,5	17

Snodo sferico maschio Mod. GY

Materiale: zama e acciaio zincato

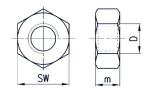


Mod.	Taglia	KK	L	CE	L2	AX	SW	SW1	L1	L3	øΤ	_ø D	E	_ø Β	_ø C	Z
GY-20	20	M8x1,25	65	32	5	16	14	10	16	12	12,5	13	6	10	20	15
GY-32	32	M10x1,25	74	35	6,5	18	17	11	19,5	15	15	19	10	14	28	15

Forcella Mod. G

ISO 8140 Materiale: acciaio zincato

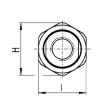
Mod.	Taglia	_ø CK	LE	CM	CL	ER	CE	KK	В	_ø B1
G-20	20	8	16	8	16	10	32	M8x1,25	22	14
G-25-32	32	10	20	10	20	12	40	M10x1,25	26	18

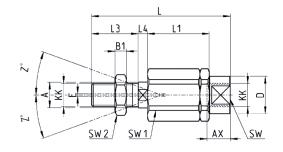

CAMOZZI Automation

Dado stelo Mod. U

ISO 4035

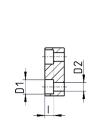
Materiale: acciaio zincato

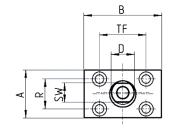



Mod.	Taglia	D	М	SW
U-20	20	M8x1,25	5	13
U-25-32	32	M10x1,25	6	17

Snodo autoallineante Mod. GK

Materiale: acciaio zincato




Mod.	Taglia	KK	L	L1	L3	L4	$_{g}A$	øD	Н	1	SW	SW1	SW2	B1	AX	Z	E
GK-20	20	M8x1,25	57	26	21	5	8	12,5	19	17	11	7	13	4	16	4	2
GK-25-32	32	M10x1,25	71,5	35	20	7,4	14	22	32	30	19	12	17	5	22	4	2

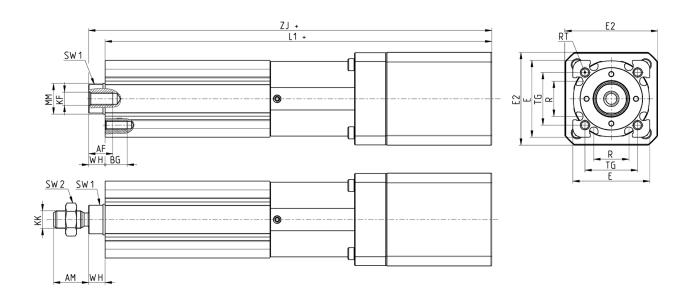
Giunto compensatore Mod. GKF

Materiale: acciaio zincato

Mod.	Taglia	KK	Α	В	R	TF	L	L1	1	øD	_ø D1	_ø D2	SW	E
GKF-20	20	M8x1,25	30	35	20	25	22,5	10	-	14	5,5	-	13	1,5
GKF-25-32	32	M10x1,25	37	60	23	36	22,5	15	6,8	18	11	6,6	15	2

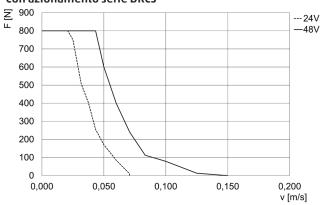
Configurazione cilindro con motore assemblato

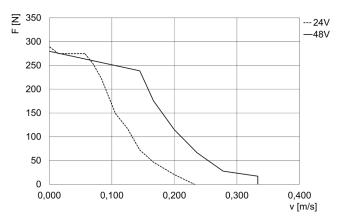
Cilindro fornito assemblato con motore e accessori standard AM e PM.


ESEMPIO DI CODIFICA

3E	020	BS	0100	P10	M	/ A	M E	0	E	-	EC	SF
3E	SERIE											
020	TAGLIA 020 = 20 032 = 32											
BS	TRASMIS BS = vite	SIONE a ricircolo di sfe	ere									
010	O CORSA Vedere t	abella caratteri:	stiche meccaniche									
P10	PASSO D P03 = 3 r P10 = 10											
М	TIPO COS M = mas F = femn											
	STELO ES () = s	TESO telo più lungo d	imm									
AM	CONNESS AM = Kit PM = Kit											
E	F = DRVI-	17 23	aglia 32)									
0	FRENO 0 = senza B = con f	a freno reno (solo per n	notore A, B, C)									
E	0 = senza	I ENCODER a encoder (solo ncoder (solo pe	per motore A, B, C) er taglia 32)									
EC	TIPO COM PN = Pro CO = Can EC = Ethe EI = Ethe	finet Open ercat	olo per motore E, F, G									
SF	= No ac	I ADDIZIONALI (s Idictional functi (non certificata		5)								

Configurazione cilindro con motore in linea AM

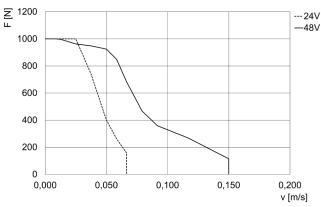


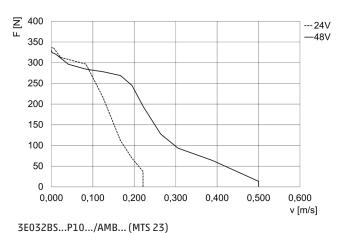

Mod.	Taglia	Motore	AM	AF	BG	Ε	E2	KF	KK	L1+	gMM	R	RT	SW1	SW2	TG	WH	ZJ+	peso corsa 0 [g]	peso corsa [kg/m]
/AMA00	20	MTS-17-18-050-0-0-S-C	16	11	10	35	42,5	М6	M8x1,25	176	14	16	M4	13	13	24	7,5	184	800	2,57
/AMAB0	20	MTS-17-18-050-0-F-S-C	16	11	10	35	42,5	М6	M8x1,25	206	14	16	Μ4	13	13	24	7,5	214	910	2,57
/AMB00	32	MTS-23-18-060-0-0-S-C	19	13	10	42	56,4	М8	M10x1,25	163	14	19	M5	13	17	32,5	7,5	171	1000	3,64
/AMB0E	32	MTS-23-18-060-0-0-E-C	19	13	10	42	73,5	M8	M10x1,25	189	14	19	M5	13	17	32,5	7,5	196	1100	3,64
/AMBBE	32	MTS-23-18-060-0-F-E-C	19	13	10	42	73,5	М8	M10x1,25	230	14	19	M5	13	17	32,5	7,5	237	1200	3,64
/AMC00	32	MTS-24-18-250-0-0-S-C	19	13	10	42	60	М8	M10x1,25	211	14	19	M5	13	17	32,5	7,5	218	1980	3,64
/AMC0E	32	MTS-24-18-250-0-0-E-C	19	13	10	42	77,5	М8	M10x1,25	235	14	19	M5	13	17	32,5	7,5	243	2080	3,64
/AMCBE	32	MTS-24-18-250-0-F-E-C	19	13	10	42	77,5	М8	M10x1,25	276	14	19	M5	13	17	32,5	7,5	284	2180	3,64

CAMOZZI Automation

CURVE FORZA-VELOCITÀ CILINDRO MOTORE IN LINEA AM

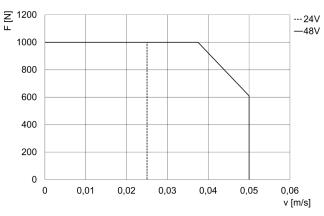
Con azionamento serie DRCS

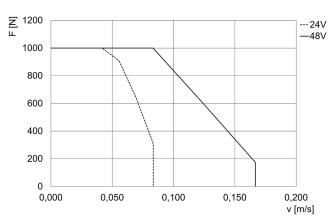




3E020BS...P03.../AMA... (MTS 17)

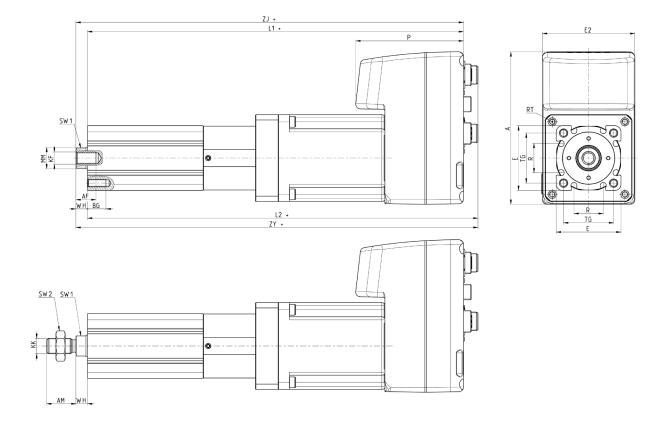
F = forza [N] v = velocità [m/s] 3E020BS...P10.../AMA... (MTS 17)


F = forza [N] v = velocità [m/s]



3E032BS...P03.../AMB... (MTS 23)

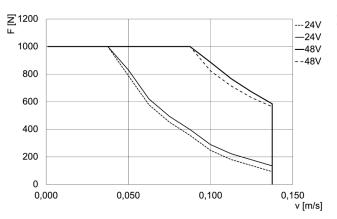
F = forza [N] v = velocità [m/s] F = forza [N] v = velocità [m/s]

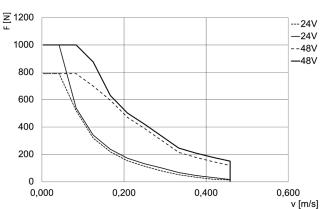

3E032BS...P03.../AMC... (MTS 24)

F = forza [N] v = velocità [m/s] 3E032BS...P10.../AMC... (MTS 24)

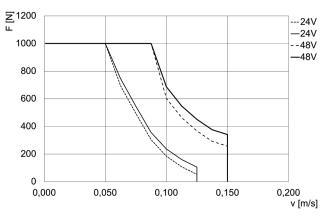
F = forza [N] v = velocità [m/s]

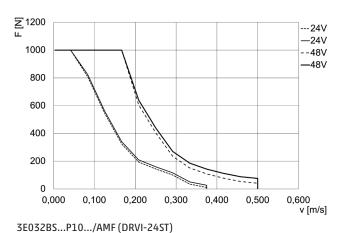
CAMOZZI Automation


Configurazione cilindro con motore in linea AM + DRVI

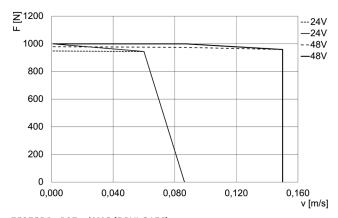


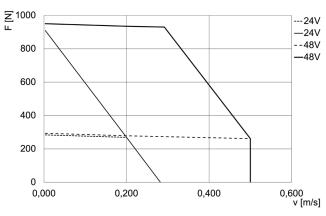
Mod.	Taglia	Motore	AM	AF	BG	Α	Ε	E2	KF	KK	L1+	$_{g}MM$	R	Р	RT	SW1	SW2	TG	WH	ZJ+	L2+	ZY+	peso corsa 0 [g]	peso corsa [kg/m]
/AME0	32	DRVI-23ST	19	13	10	99	42	60	M8	M10x1,25	249	14	19	70	M5	13	17	32,5	7,5	256,5	259	266	1660	3,64
/AMF0	32	DRVI-24ST	19	13	10	99	42	60	М8	M10x1,25	275	14	19	70	М5	13	17	32,5	7,5	282,5	285	292	2240	3,64
/AMG0	32	DRVI-24EC	19	13	10	99	42	60	M8	M10x1,25	254	14	19	70	М5	13	17	32,5	7,5	261,5	264	271	1700	3,64


CURVE FORZA-VELOCITÀ CILINDRO MOTORE IN LINEA AM + DRVI



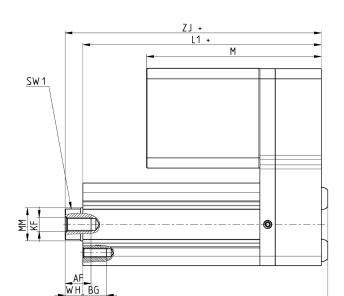
3E032BS...P03.../AME (DRVI-23ST)
F = forza [N]
v = velocità [m/s]
Linee continue = forza di picco dell'attuatore
Linee tratteggiate = forza nominale dell'attuatore

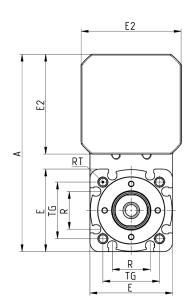

3E032BS...P03.../AME (DRVI-23ST)
F = forza [N]
v = velocità [m/s]
Linee continue = forza di picco dell'attuatore
Linee tratteggiate = forza nominale dell'attuatore

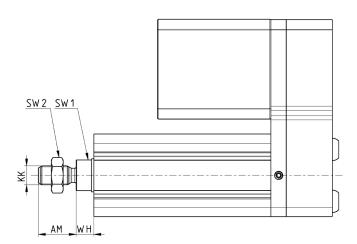


3E032BS...P03.../AMF (DRVI-24ST)
F = forza [N]
v = velocità [m/s]
Linee continue = forza di picco dell'attuatore
Linee tratteggiate = forza nominale dell'attuatore

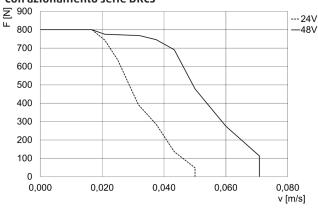
F = forza [N]
v = velocità [m/s]
Linee continue = forza di picco dell'attuatore
Linee tratteggiate = forza nominale dell'attuatore

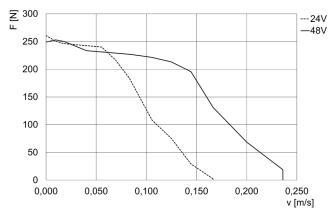

3E032BS...P03.../AMG (DRVI-24EC)
F = forza [N]
v = velocità [m/s]
Linee continue = forza di picco dell'attuatore
Linee tratteggiate = forza nominale dell'attuatore


3E032BS...P10.../AMG (DRVI-24EC)
F = forza [N]
v = velocità [m/s]
Linee continue = forza di picco dell'attuatore
Linee tratteggiate = forza nominale dell'attuatore


C₹ CAMOZZI

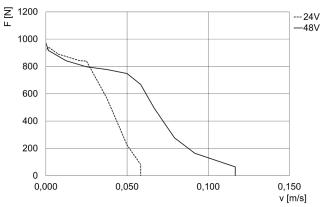
Configurazione cilindro con motore in parallelo PM

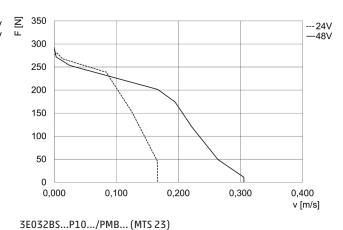

Mod.	Taglia	Motore	AM	AF	BG	E	E2	KF	М	Α	KK	L1+	L2+	gMM	R	RT	SW1	SW2	TG	WH	ZJ+	ZY+	corsa minima suggerita ^(A)	peso corsa 0 [g]	peso corsa [kg/m]
/PMA00	20	MTS-17-18- 050-0-0-S-C		11	10	35	42,5	М6	74	83,5	M8x1,25	101	104	14	16	M4	13	13	24	7,5	109	112	10	890	2,57
/PMAB0	20	MTS-17-18- 050-0-F-S-C		11	10	35	42,5	М6	104	83,5	M8x1,25	101	104	14	16	M4	13	13	24	7,5	109	112	10	1000	2,57
/PMB00	32	MTS-23-18- 060-0-0-S-C		13	10	42	56,4	M8	67	116,5	M10x1,25	103	106	14	19	M5	13	17	32,5	7,5	111	114	10	1240	3,64
/PMB0E	32	MTS-23-18- 060-0-0-E-C		13	10	42	56,4	М8	92,5	134	M10x1,25	103	106	14	19	M5	13	17	32,5	7,5	111	114	10	1340	3,64
/РМВВЕ	32	MTS-23-18- 060-0-F-E-C		13	10	42	56,4	М8	133,5	134	M10x1,25	103	106	14	19	M5	13	17	32,5	7,5	111	114	40	1440	3,64
/PMC00	32	MTS-24-18- 250-0-0-S-C		13	10	42	60	М8	114,5	118,5	M10x1,25	103	106	14	19	M5	13	17	32,5	7,5	111	114	20	2200	3,64
/PMCOE	32	MTS-24-18- 250-0-0-E-C		13	10	42	60	M8	139	136	M10x1,25	103	106	14	19	M5	13	17	32,5	7,5	111	114	45	2320	3,64
/PMCBE	32	MTS-24-18- 250-0-F-E-C	19	13	10	42	60	M8	180	136	M10x1,25	103	106	14	19	M5	13	17	32,5	7,5	111	114	85	2420	3,64


^(A) Corsa minima affinché L1 sia maggiore di M, vedere "caratteristiche meccaniche" per corsa minima del cilindro.

CURVE FORZA-VELOCITÀ CILINDRO MOTORE IN PARALLELO PM

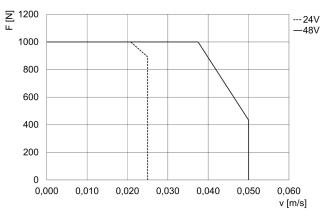
Con azionamento serie DRCS

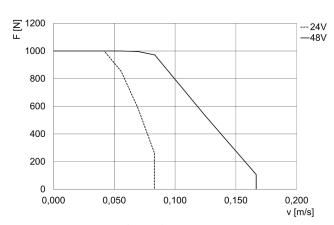




3E020BS...P03.../PMA... (MTS 17)

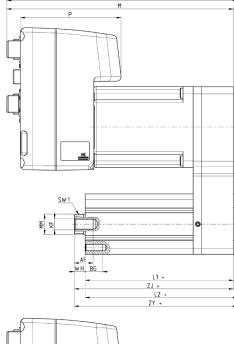
F = forza [N] v = velocità [m/s] 3E020BS...P10.../PMA... (MTS 17)

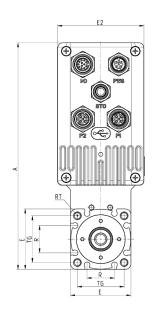

F = forza [N] v = velocità [m/s]

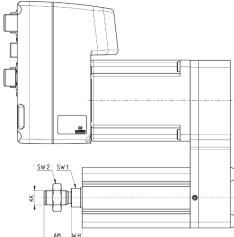


3E032BS...P03.../PMB... (MTS 23)

F = forza [N] v = velocità [m/s] F = forza [N] v = velocità [m/s]

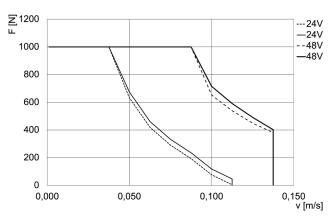

3E032BS...P03.../PMC... (MTS 24)

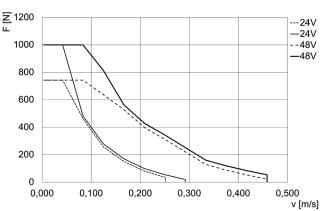

F = forza [N] v = velocità [m/s] 3E032BS...P10.../PMC... (MTS 24)


F = forza [N] v = velocità [m/s]

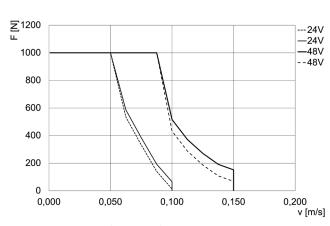
SE CAMOZZI

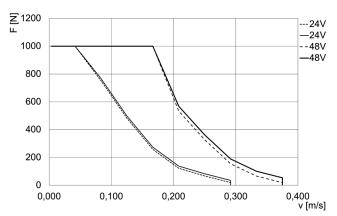
Configurazione cilindro con motore in parallelo PM + DRVI



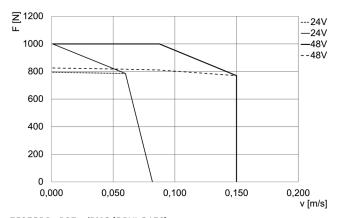

Mod.	Taglia	Motore	AM AF	BG E	E E2 KF	M	Р	Α	KK	L1+ L	2+ _ø ľ	MM	R RT	SW1	SW2	TG	WH	ZJ+	ZY+	corsa minima suggerita ⁽	A) peso corsa 0 [g] r	peso corsa [kg/m]
/AME0	32	DRVI-23S	T 19 13	3 10 4	2 60 M8	153	70 1	L57,5 M	110x1,2	5 103 1	06 1	14	19 M5	13	17	32,5	7,5	110,5	113,5	60	1900	3,64
/AMF0	32	DRVI-24S	T 19 13	3 10 4	2 60 M8	179	70 1	L57,5 №	110x1,2	5 103 1	06 1	14	19 M5	13	17	32,5	7,5	110,5	113,5	80	2480	3,64
/AMG0	32	DRVI-24E	C 19 13	3 10 4	2 60 M8	158	70 1	L57,5 M	110x1,2	5 103 1	06 1	14	19 M5	13	17	32,5	7,5	110,5	113,5	60	1940	3,64

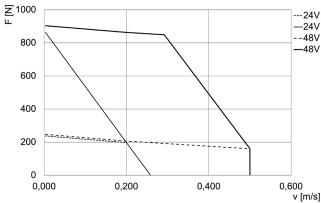
(A) Corsa minima affinché L1 sia maggiore di M, vedere "caratteristiche meccaniche" per corsa minima del cilindro.


CURVE FORZA-VELOCITÀ CILINDRO MOTORE IN PARALLELO PM + DRVI



3E032BS...P03.../PME (DRVI-23ST)
F = forza [N]
v = velocità [m/s]
Linee continue = forza di picco dell'attuatore
Linee tratteggiate = forza nominale dell'attuatore


3E032BS...P10.../PME (DRVI-23ST)
F = forza [N]
v = velocità [m/s]
Linee continue = forza di picco dell'attuatore
Linee tratteggiate = forza nominale dell'attuatore



3E032BS...P03.../PMF (DRVI-24ST)
F = forza [N]
v = velocità [m/s]
Linee continue = forza di picco dell'attuatore
Linee tratteggiate = forza nominale dell'attuatore

3E032BS...P10.../PMF (DRVI-24ST)
F = forza [N]
v = velocità [m/s]
Linee continue = forza di picco dell'attuatore
Linee tratteggiate = forza nominale dell'attuatore

3E032BS...P03.../PMG (DRVI-24EC)
F = forza [N]
v = velocità [m/s]
Linee continue = forza di picco dell'attuatore
Linee tratteggiate = forza nominale dell'attuatore

3E032BS...P10.../PMG (DRVI-24EC)
F = forza [N]
v = velocità [m/s]
Linee continue = forza di picco dell'attuatore
Linee tratteggiate = forza nominale dell'attuatore