Series 5E electromechanical axis

Sizes 50, 65, 80
Available versions: standard axis, support axis, reinforced axis

Series 5E axes are mechanical linear actuators in which the rotary movement generated by a motor is converted into a linear movement by means of a toothed belt.
The Series $\mathbf{5 E}$, available in 3 sizes, $\mathbf{5 0 , 6 5}$ and 80 , is realized by means of a special self-supporting square profile, in which the components have been completely integrated, assuring compactness and light weight.
The presence of a recirculating ball guide grants high stiffness and resistance to external loads.

To protect the internal elements from potential contaminants from the external environment, the profile has been closed with a stainless steel plate. The axis is equipped with a magnet that makes it possible to use external proximity switches (Series CSH), allowing operations like homing or extra-stroke readings to be performed. Moreover, these actuators also have accessories in order to be used with inductive sensors. The Series 5E is equipped with specific interface kits making it possibleto connect the motor on 4 sides. The use with high dynamics and the possibility to realize multi-axis systems, make the Series 5E particularly suitable for the packaging and assembly sectors.
» Multiposition system with transmission of the movement with toothed belt
"Suitable for high dynamics
» Possibility to connect the motor on 4 sides

Large range of motor interfaces
» Possibility to use magnetic proximity switches and/ or inductive sensors
» IP 40
» Max stroke 6 meters
» Plates to realize multiaxis systems
» Presence of internal channels for re-lubrication

Large range of axis mounting accessories
»Sliders available: standard, long, double
»Supplied with protection plugs for end caps and slider's centering bushings
» Greasing nipples included

GENERAL DATA

Construction	electromechanical axis with toothed belt
Design	open profile with protection plate
Operation	multi-position actuator
Sizes	$50,65,80$
Strokes	$50 \div 4000$ mm for size $50 ; 50 \div 6000$ mm for sizes 65 and 80
Type of guide	internal, with recirculating balls (cage type)
Fixing	by means of slots on the profile and special clamps
Mounting motor	on all 4 sides
Operating temperature	$-10^{\circ} \mathrm{C} \div+50^{\circ} \mathrm{C}$
Storage temperature	$-20^{\circ} \mathrm{C} \div+80^{\circ} \mathrm{C}$
Protection class	IP 40 (available for versions A and D only)
Lubrication	centralized lubrification by means of internal channels
Repeatability	± 0.05 mm
Duty cycle	100%
Use with external sensors	Series CSH magnetic switches in special slots or inductives by means of supports

CODING EXAMPLE

MECHANICAL CHARACTERISTICS

		Size 50	Size 50	Size 50	Size 65	Size 65	Size 65	Size 65	Size 80	Size 80	Size 80	Size 80
RECIRCULATING BALL GUIDE (CAGE TYPE)												
Version		A	A	D	A	A	D	H	A	A	D	H
Type of slider		S	L	S	S	L	S	S	S	L	S	S
Number of guides		1	1	1	1	1	1	2	1	1	1	2
Number of RDS blocks	pcs	2	3	2	2	3	2	4	2	3	2	4
Fy , eq ${ }^{(A)}$	N	3400	5100	3400	8300	12450	8300	16600	13000	19500	13000	26000
$\mathrm{Fz}, \mathrm{eq}{ }^{(\mathrm{A})}$	N	3400	5100	3400	8300	12450	8300	16600	13000	19500	13000	26000
Mx, eq ${ }^{\left({ }^{(1)}\right.}$	Nm	19.4	29	19.4	47.7	71.6	47.7	234.7	106	160	106	454
My, eq ${ }^{(A)}$	Nm	91.7	183.5	91.7	283.2	564.7	282.3	564.7	626	1252	626	1252
$\mathrm{Mz}, \mathrm{eq}^{(A)}$	Nm	91.7	183.5	91.7	283.2	564.7	282.3	564.7	626	1252	626	1252
Max linear speed of mechanics ($\mathrm{V}_{\text {max }}$) ${ }_{\text {a }}$ (m / s	5	$2.5{ }^{\text {(8) }}$	5	5	$2.5{ }^{(8)}$	5	$2.5{ }^{(8)}$	5	$2.5{ }^{\text {(B) }}$	5	$2.5{ }^{\text {(8) }}$
Max linear acceleration of mechanics ($\mathrm{a}_{\max }$)	$\mathrm{m} / \mathrm{s}^{2}$	50	$20^{(8)}$	50	50	$20^{(8)}$	50	$2.5{ }^{(8)}$	50	$20^{(8)}$	50	$20^{\text {(8) }}$
PROFILE												
Moment of surface inertia I_{y}	mm^{4}	$1.89 \cdot 105$	1.89•105	$1.89 \cdot 105$	4.94-105	4.94-105	4.94-105	4.94-105	$1.23 \cdot 106$	$1.23 \cdot 106$	$1.23 \cdot 106$	$1.23 \cdot 106$
Moment of surface inertia I_{2}	mm^{4}	$2.48 \cdot 105$	$2.48 \cdot 105$	$2.48 \cdot 105$	$6.97 \cdot 105$	$6.97 \cdot 105$	$6.97 \cdot 105$	$6.97 \cdot 105$	$1.68 \cdot 106$	$1.68 \cdot 106$	$1.68 \cdot 106$	$1.68 \cdot 106$
TOOTHED BELT												
Type		20 AT 5 HP	20 AT 5 HP	-	32 AT 5 HP	32 AT 5 HP	-	32 AT 5 HP	32 AT 5 HP	32 AT 5 HP	-	32 AT 5 HP
Pitch	mm	5	5	-	5	5	-	5	10	10	-	10
Max transmittable load	N	See the diagram	See the diagram	-	See the diagram	See the diagram	-	See the diagram	See the diagram	See the diagram	-	See the diagram
PULLEY												
Effective diameter of the pulley	mm	31.83	31.83	-	47.75	47.75	-	47.75	63.66	63.66	-	63.66
Number of teeth	z	20	20	-	30	30	-	30	20	20	-	20
Linear movement per pulley round	mm/round	100	100	-	150	150	-	150	200	200	-	200

NOTES:

1. Check the nominal admissible torque
of the used motion transmission devices.
2. Details about directions of loads
and moments can be found in the
"EQUIVALENT LOAD" section.
${ }^{(A)}$ Value refers to a covered distance of 2000 Km with fully supported system.
${ }^{(8)}$ The "suggested" speed is not the mechanical limit of the unit but represents the best compromise between high load applied and high dynamics. In case of particular requirements, please contact our technical assistance (service@camozzi.com).

SERIES 5E STROKE

LEGEND：

C＝Stroke
SE＝Standard extra－stroke［5ES050．．$=30 \mathrm{~mm}$ ］
［5ES065．．$=30 \mathrm{~mm}$ ］
［5ES080．．$=30 \mathrm{~mm}$ ］
NOTES：
－Should an additional extra－stroke be required，it must be foreseen by the client．
－The slider should never work in stop on the header．

SERIES 5E MATERIALS

COMPONENTS	MATERIALS
1．End cap	Aluminium alloy
2．Pulley	Steel
3．End cap bumper	Technopolymer
4．Protection plate	Steel
5．Slider	Aluminium alloy
6．Bumper	Technopolymer
7． Toothed belt	PU＋Steel
8．Recirculating ball guide	Steel
Products designed for industrial applications． General terms and conditions for sale are available on www．camozzi．com．	

HOW TO CALCULATE THE LIFE OF SERIES 5E AXIS

The correct dimensioning of the Series 5E axis, used individually or in a cartesian system with several axes, you need to consider some facts, both static and dynamic.

CALCULATION OF LIFE [km]

$\mathrm{L}_{\mathrm{eq}}=$ Life of the axis [km]
$\mathrm{f}_{\mathrm{l}}=$ load coefficient
$f_{w}=$ safety coefficient according to the working conditions

The loads acting on the actuator (Fy, Fz, Mx, My and Mz) that appear in the fl calculation are the average ones on the cycle. These are calculated by averaging the loads of each single phase as indicated in the equation of P.
$l_{s}=$ stroke $s_{1}=$ acc. phase; $s_{2}=$ constant speed phase; $s_{3}=$ deceleration phase
$\mathrm{P}=\mathrm{Mx} / \mathrm{My} / \mathrm{Mz} / \mathrm{Fy} / \mathrm{Fz}$
$f_{l}=\frac{|F y|}{F y, e q}+\frac{|F z|}{F z, e q}+\frac{|M x|}{M x, e q}+\frac{|M y|}{M y, e q}+\frac{|M z|}{M z, e q}$
$L_{e q}=\left(\frac{1}{f_{l} \cdot f_{w}}\right)^{3} \cdot 2000$

$$
P=\sqrt[3]{\frac{1}{l s} \cdot \sum_{i=1}^{n}\left(P_{i}^{3} \cdot s_{i}\right)}
$$

$$
P=\sqrt[3]{\frac{1}{l s} \cdot\left(P_{1}^{3} \cdot s_{1}+P_{2}^{3} \cdot s_{2}+P_{3}^{3} \cdot s_{3}\right)}
$$

EQUIVALENT LOAD

$\mathrm{Fy}=$ Force acting along the Y -axis [N]
$\mathrm{Fz}=$ Force acting along the Z-axis [N]
$\mathrm{h}=$ fixed distance for 5 E axis [mm]
$\mathrm{Mx}=$ Moment along X -axis [Nm]
$\mathrm{My}=$ Moment along Y -axis [Nm]
$\mathrm{Mz}=$ Moment along Z -axis Z [Nm]
Here you can find the " h " values, valid for version A :

- h = 45.5 mm (5ES050)
- $\mathrm{h}=56.0 \mathrm{~mm}$ (5ES065)
-h = 69.5 mm (5ES080)
Here you can find the "A" and "B" values, valid for version H :
"A" = 56.0 mm "B" 32.9 mm (5ES050)
"A" = 57.0 mm "B" 45.0 mm (5ES065)
"A" = 71.6 mm "B" 51.6 mm (5ES080)

GRAPH OF THE SERVICE LIFE

HOW TO CALCULATE THE SERVICE LIFE OF 5ES050TBL0500AS1 - HORIZONTAL MOUNTING

$\mathrm{acc}=\mathrm{dec}=6 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{~V}=0.6 \mathrm{~m} / \mathrm{s}$
$\mathrm{s}_{1}=\mathrm{s}_{3}=30 \mathrm{~mm}$
$\mathrm{M}=15 \mathrm{~kg}$
$\mathrm{s}=500 \mathrm{~mm}$
bM = 86 mm
$\mathrm{f}_{\mathrm{w}}=1$

CALCULATION OF APPLIED LOADS

$F_{y}=0$
$F_{z}=M \cdot g=15 \cdot 9.81=147 \mathrm{~N}$
$M_{x_{1 ; 2 ; 3}}=F_{z} \cdot b_{M}=147 \cdot 0.086=12.7 \mathrm{Nm}$
$M_{y_{1 ; 3}}=F_{x} \cdot\left(h_{M}+h\right)=M \cdot a \cdot\left(h_{M}+h\right)=$
$=15 \cdot 6 \cdot(0.05+0.045)=8.55 \mathrm{Nm}$
$M_{y_{2}}=F_{x} \cdot\left(h_{M}+h\right)=M \cdot a \cdot\left(h_{M}+h\right)=$
$=15 \cdot 0 \cdot(0.05+0.045)=0 \mathrm{Nm}$
$M_{z_{1 ; 3}}=F_{x} \cdot b_{M}=M \cdot a \cdot b_{M}=$
$=15 \cdot 6 \cdot 0.086=7.74 \mathrm{Nm}$
$M_{z_{2}}=F_{x} \cdot b_{M}=M \cdot a \cdot b_{M}=$
$=15 \cdot 0 \cdot 0.086=0 \mathrm{Nm}$
$M_{y}=\sqrt[3]{\frac{1}{l s} \cdot\left(M y_{1}{ }^{3} \cdot s 1+M y_{2}{ }^{3} \cdot s 2+M y_{3}{ }^{3} \cdot s 3+\cdots+M y_{n}{ }^{3} \cdot s n\right)}=$
$=\sqrt[3]{\frac{1}{500} \cdot\left(8.55^{3} \cdot 30+0 \cdot 440+8.55^{3} \cdot 30\right)}=4.22 \mathrm{Nm}$
$M_{Z}=\sqrt[3]{\frac{1}{500} \cdot\left(7.74^{3} \cdot 30+0 \cdot 440+7.743 \cdot 30\right)}=3.82 \mathrm{Nm}$
$f l=\frac{|F y|}{F y, e q}+\frac{|F z|}{F z, e q}+\frac{|M x|}{M x, e q}+\frac{|M y|}{M y, e q}+\frac{|M z|}{M z, e q}=$
$=\frac{0}{3400}+\frac{147}{3400}+\frac{12.7}{19.4}+\frac{4.22}{91.7}+\frac{3.82}{91.7}=0.785$

HOW TO CALCULATE THE SERVICE LIFE

Once the fl value has been calculated, the service life value can be obtained from the graph or by using the formula:

HOW TO CALCULATE THE SERVICE LIFE OF 5ES065TBL0750AS1 - VERTICAL MOUNTING

$\mathrm{acc}=\mathrm{dec}=10 \mathrm{~m} / \mathrm{s}^{2} \quad \mathrm{v}=0.8 \mathrm{~m} / \mathrm{s}$
$\mathrm{s}_{1}=\mathrm{s}_{3}=32 \mathrm{~mm}$
$\mathrm{ls}=750 \mathrm{~mm}$
$\mathrm{f}_{\mathrm{w}}=1.5$

CALCULATION OF APPLIED LOADS

$$
\begin{aligned}
& F_{y}=0 \mathrm{~N} \\
& F_{z}=0 \mathrm{~N} \\
& M_{x_{12: 2}}=0 \mathrm{Nm} \\
& M_{y_{1}}=F_{x} \cdot\left(h_{M}+h\right)=M \cdot(g+a) \cdot\left(h_{M}+h\right)= \\
& =50 \cdot(9.81+10) \cdot(0.056+0.0795)=134.2 \mathrm{Nm} \\
& M_{y_{2}}=F_{x} \cdot\left(h_{M}+h\right)=M \cdot(g+a) \cdot\left(h_{M}+h\right)= \\
& =50 \cdot(9.81+0) \cdot(0.056+0.0795)=66.5 \mathrm{Nm} \\
& M_{y_{3}}=F_{x} \cdot\left(h_{M}+h\right)=M \cdot(g+a) \cdot\left(h_{M}+h\right)= \\
& =50 \cdot(9.81-10) \cdot(0.056+0.0795)=1.3 \mathrm{Nm}^{*}
\end{aligned}
$$

$$
\begin{aligned}
& M_{z_{1}}=F_{x} \cdot b_{M}=M \cdot(g+a) \cdot b_{M}= \\
& =50 \cdot(9.81+10) \cdot 0.12=118.9 \mathrm{Nm} \\
& M_{z_{2}}=F_{x} \cdot b_{M}=M \cdot(g+a) \cdot b_{M}= \\
& =50 \cdot(9.81+0) \cdot 0.12=58.9 \mathrm{Nm} \\
& M_{z_{3}}=F_{x} \cdot b_{M}=M \cdot(g+a) \cdot b_{M}= \\
& =50 \cdot(9.81-10) \cdot 0.12=1.14 \mathrm{Nm}^{*} \\
& M_{y}=\sqrt[3]{\frac{1}{750} \cdot\left(134.2^{3} \cdot 32+66.5^{3} \cdot 686+1.3^{3} \cdot 32\right)}=71.9 \mathrm{Nm} \\
& M_{z}=\sqrt[3]{\frac{1}{750} \cdot\left(118.9^{3} \cdot 32+58.9^{3} \cdot 686+1.14^{3} \cdot 32\right)}=63.7 \mathrm{Nm} \\
& f l=\frac{|F y|}{F y, e q}+\frac{|F z|}{F z, e q}+\frac{|M x|}{M x, e q}+\frac{|M y|}{M y, e q}+\frac{|M z|}{M z, e q}= \\
& =\frac{0}{8300}+\frac{0}{8300}+\frac{71.9}{324}+\frac{63.7}{324}+\frac{0}{55}=0.42
\end{aligned}
$$

*N.B: Positive sign because for each phase, the values are considered in absolute value.

HOW TO CALCULATE THE SERVICE LIFE

Once the fl value has been calculated, the service life value can be obtained from the graph or by using the formula:

$$
L e q=\left(\frac{1}{f l \cdot f w}\right)^{3} \times 2000=\left(\frac{1}{0.42 \cdot 1.5}\right)^{3} \times 2000=8013 \mathrm{~km}
$$

HOW TO CALCULATE THE DRIVING TORQUE [Nm]

$\mathrm{F}_{\mathrm{A}}=$ Total force acting from outside [N]
$F_{E}=$ Force to be applied externally [N]
$\mathrm{g}=$ Gravitational acceleration $\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$
$\mathrm{m}_{\mathrm{E}}=$ Mass of the body to move [kg]

$$
C_{T O T}=C_{M 1}+C_{M 2}+C_{M 3}
$$

$$
F_{A}=F_{E}+m_{E} \cdot a
$$

$$
C_{M 1}=\frac{F_{A} \cdot D_{P}}{2}
$$

$\mathrm{J}_{\text {Tor }}=$ Moment of inertia of rotating components [$\mathrm{kg} \cdot \mathrm{m}^{2}$]
$\dot{\omega}=$ Angular acceleration [rad $/ \mathrm{s}^{2}$]
$a=$ Axis linear acceleration [m/s ${ }^{2}$]
$\mathrm{C}_{\mathrm{M} 2}=$ Driving torque due to rotating components [Nm]

$$
\dot{\omega}=\frac{2 \cdot a}{D_{P}}
$$

$$
C_{M 2}=J_{T O T} \cdot \dot{\omega}
$$

$\mathrm{F}_{\mathrm{T}}=$ Force needed to move translating components [N]
$F_{T F}=$ Force needed to move fixed-length translating components [N]
$\mathrm{F}_{\mathrm{TV}}=$ Force needed to move variable-length translating components [N]
$m_{c 1}=$ Mass of fixed-length translating components [kg]
$\mathrm{K}_{\mathrm{TV}}=$ Mass coefficient of variable-length
translating components [kg/mm]
$\mathrm{C}_{\mathrm{M} 3}=$ Driving torque due to translating components [Nm]
$\mathrm{K}_{\mathrm{TI}}=$ Mass coefficient of variable-length components with the interaxis [kg/mm]
C = Stroke [mm]
I = Interaxis [mm]

$$
\begin{gathered}
F_{T T}=F_{T F}+F_{T V} \\
F_{T F}=m_{C 1} \cdot a \\
F_{T V}=K_{T V} \cdot C \cdot a \\
C_{M 3}=\frac{F_{T T} \cdot D_{P}}{2}
\end{gathered}
$$

Mod.	$\mathrm{J}_{\text {TOT }}\left[\mathrm{Kg} \cdot \mathrm{mm}^{2}\right.$]	$\mathrm{m}_{\mathrm{c} 1}[\mathrm{~kg}]$	$\mathrm{K}_{\mathrm{TV}}[\mathrm{Kg} \cdot \mathrm{m}]$	$\mathrm{K}_{\mathrm{tI}}[\mathrm{Kg} / \mathrm{m}]$
5E050...AS1	48.76	0.51	0.14	0.00
5E050...AL1	48.76	0.80	0.14	0.00
5E050...AS2	48.76	1.01	0.14	0.38
5E050...DS1	0.00	0.40	0.00	0.00
5E050...DS2	0.00	0.87	0.00	0.31
5E065...AS1	372.07	1.27	0.21	0.00
5E065...AL1	372.07	1.83	0.21	0.00
5E065...AS2	372.07	2.53	0.21	0.41
5E065...DS1	0.00	1.01	0.00	0.00
5E065...HS1	372.07	2.84	0.21	0.00
5E065...DS2	0.00	2.1	0.00	0.31
5E080...AS1	1130.28	2.69	0.34	0.00
5E080...AL1	1130.28	3.84	0.34	0.00
5E080...AS2	1130.28	5.38	0.34	0.48
5E080...DS1	0.00	2.15	0.00	0.00
5E080...HS1	1130.28	5.61	0.34	0.00
5E080...DS2	0.00	4.41	0.00	0.31

TRANSMISSIBLE FORCE

According to the size of the axis and the selected speed, the transmissible force of the toothed belt has the following limits.

HOW TO CALCULATE MAX DEFLECTION AND VERIFY DISTANCE BETWEEN SUPPORTS

The electromechanical axis 5E is a self-supporting system and can also be used between 2 or more supports without the need of a continuous contact surface.
The maximum value of the deflection generated by the deformation of the system must never exceed the following calculation:
$\mathrm{f}_{\text {max }}=$ Maximum admissible deflection [mm]
$C_{\text {max }}=$ Maximum stroke of axis 5 E [mm]

$$
f_{\max }=c_{\max } \cdot 5 \cdot 10^{-4}
$$

NOTE: for a quicker choice, please see the graphs on the following pages.

APPLICATION	ACCELERATION $\left[\mathrm{m} / \mathrm{s}^{2}\right]$	SPEED $[\mathrm{m} / \mathrm{s}]$	f_{w}
light	<10	<1.5	$1 \div 1.25$
normal	$10 \div 25$	$1.5 \div 2.5$	$1.25 \div 1.5$
heavy	>25	>2.5	$1.5 \div 3$

Deflection according to the distance of the supports - version A

Size 050
$\mathrm{f}=$ deflection generated between the supports [mm] d = distance between the supports [mm]

Size 065
$\mathrm{f}=$ deflection generated between the supports [mm] $d=$ distance between the supports [mm]

Size 080
$\mathrm{f}=$ deflection generated between the supports [mm] $d=$ distance between the supports [mm]

Deflection according to the distance of the supports - version H

Size 065
$\mathrm{f}=$ deflection generated between the supports [mm] $d=$ distance between the supports [mm]

Size 050
$f=$ deflection generated between the supports [mm] $d=$ distance between the supports [mm]

Size 080
$\mathrm{f}=$ deflection generated between the supports [mm]
d = distance between the supports [mm]

ACCESSORIES FOR SERIES 5E

Side clamping bracket Mod. BGS

Interface plate - Series 6E cylinder on slider

Kit to fix the inductive sensor

4

Parallel connection kit

Perforated side clamping bracket Mod. BGA

Interface plate - profile side on slider, left pos.

Kit to connect the gearbox GB Mod. FR

Interface plate - slider on slider

Interf. plate - profile side on slider, right pos.

Kit to connect the gearbox, enhanced series

Interface plate - profile on slider

Fixed interface plate

Kit to connect the gearbox, enhanced series (size 80)

5E/5V connection flange

Centering ring Mod. TR-CG

Interface plate - profile on slider - long arm

Interface plateGuide S. 45 / Cyl. S. 6E

All accessories are supplied separately from the axis.

Electromechanical axis Mod．5E．．．AS1

NOTE：
＊We recommend a coupling with a shaft of tolerance h8．
20imension T2 in size 50 is not indicated because there is only one slot．
？Dimension Y indicates the hole for centralized lubrication by means of grease．

Taglia A

Size	WEIGHT STROKE ZERO［kg］	STROKE WEIGHT PER METER［kg／m］
$\mathbf{5 0}$	2.15	3.35
65	4.6	5.4
80	8.9	5.9

NOTE:
*We recommend a coupling with a shaft of tolerance h8.
D Dimension T 2 in size 50 is not indicated because there is only one slot.

- Dimension Y indicates the hole for centralized lubrication by means of grease

Taglia	A	B	E	E1	F	${ }_{0} \mathrm{Gl}$	G2	H	L1	L2	M1	M2	M3	N	P1	P2	K1	J1	K2	J2	T1	T2	T3	Y	W	Z1	Z2	S1	S2	S3	S4	V1	V2	V3	V4
50	32.5	15	8.5	100	50	6	2	60	354	238	200	200	48	5	30	40	M4	7	M3	5	20	[10	[230	8	4	5,4	6,8	3,65	5	6	12	4	5.5
65	35	20	8.5	125	65	8	3	75	438	288	250	250	63	5	40	53	M5	8	M3	6	23.5	18	10	[280	8	4	5,4	6,8	3,65	5	6	12	4	5.5
80	35	30	11.5	165	80	10	3	95	548	368	330	330	78	8	55	64	M6	12	M4	8.5	25	25	10	[360	8	4	5,4	6,8	3,65	5	8	16.5	6.8	9

Size	WEIGHT STROKE ZERO [kg]	STROKE WEIGHT PER METER [kg/m]
$\mathbf{5 0}$	1.81	3.00
$\mathbf{6 5}$	3.58	4.88
80	7.05	5.31

Electromechanical axis Mod. 5E...HS1

NOTE:
*We recommend a coupling with a shaft of tolerance h8.
[0] Dimension Y indicates the hole for centralized lubrication by means of grease.

 80353068686.538630 .560 .526 .51658011039554836833011911523165643133 .5 M5 12M48.5 M5 10 252510 回46840.5360 $8 \quad 45.46 .83 .655816 .56 .89$

Size	WEIGHT STROKE ZERO [kg]	STROKE WEIGHT PER METER [kg/m]
65	7.08	6.86
80	14.86	8.34

Electromechanical axis Mod. 5E...AL1

E...ALI

NOTE:
*We recommend a coupling with a shaft of tolerance h8.
0 Dimension T2 in size 50 is not indicated because there is only one slot.
[0] Dimension Y indicates the hole for centralized lubrication by means of grease.

Size	WEIGHT STROKE ZERO [kg]	STROKE WEIGHT PER METER [kg/m]
$\mathbf{5 0}$	2.58	3.35
$\mathbf{6 5}$	5.56	5.4
$\mathbf{8 0}$	11.10	5.9

Electromechanical axis Mod. 5E...AS2

NOTE:
*We recommend a coupling with a shaft of tolerance h8.
2Dimension T2 in size 50 is not indicated because there is only one slot.
目Dimension Y indicates the hole for centralized lubrication by means of grease.

Size	CL min	CL max	Max applicable stroke	WEIGHT STROKE ZERO [kg]	WEIGHT PER METER [kg/m] (valid for stroke and interaxis increases)
$\mathbf{5 0}$	250	2000	Smax $=4262-\mathrm{CL}$	3.49	
$\mathbf{6 5}$	300	2000	Smax $=6212-\mathrm{CL}$	7.35	5.4
80	400	2000	Smax $=6132-\mathrm{CL}$	14.68	5.9

Side clamping bracket Mod. BGS

Material: Aluminium

Supplied with:
2x clamps
TABLE NOTE:

* according to the span (max admissible deflection) recommended value 500 mm

Mod.	Size	A	B	C1	C2	${ }_{9}$ D1	${ }_{6} \mathrm{D} 2$	E1	E2	H1	H2	P	Weight (g)
BGS-5E-M5	50	25	66	68	*	5.5	9	82	45	6.4	6	10	45
BGS-5E-M5	65	25	81	85	*	5.5	9	97	45	6.4	6	10	45
BGS-5E-M5	80	25	96	100	*	5.5	9	112	45	6.4	6	10	45
BGS-5E-M6	50	25	66	68	*	6.5	10.5	82	45	5.4	7	10	40
BGS-5E-M6	65	25	81	85	*	6.5	10.5	97	45	5.4	7	10	40
BGS-5E-M6	80	25	96	100	*	6.5	10.5	112	45	5.4	7	10	40

Perforated side clamping bracket Mod. BGA
Material: Aluminium

Supplied with:
$2 x$ clamps with perforation
TABLE NOTE:

* according to the span
(max admissible deflection) recommended value 500 mm

Mod.	Size	A1	A2	B	C1	C2	${ }_{9}$ D1	${ }_{0}$ D2	E1	E2	H1	H2	P	Weight (g)
BGA-5E-M5	50	40	50	66	68	*	5.5	9	82	65	6.4	6	7.5	60
BGA-5E-M5	65	40	50	81	85	*	5.5	9	97	65	6.4	6	7.5	60
BGA-5E-M5	80	40	50	96	100	*	5.5	9	112	65	6.4	6	7.5	60
BGA-5E-M6	50	40	50	66	68	*	6.5	10.5	82	65	5.4	7	7.5	55
BGA-5E-M6	65	40	50	81	85	*	6.5	10.5	97	65	5.4	7	7.5	55
BGA-5E-M6	80	40	50	96	100	*	6.5	10.5	112	65	5.4	7	7.5	55

Interface plate - slider on slider

The kit includes:
$1 x$ interface plate
$8 \times$ screws $+8 \times$ lock washers to connect the plate on the slider of the main axis
$4 x$ screws $+4 x$ lock washers to connect the plate on the slider of the secondary axis

| Mod. | Size | A1 | A2 | D | E | S |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XY-S65-S50 | 65 | 150 | 150 | 55 | 70 | 12 |
| XY-S80-S50 | 80 | 190 | 150 | 55 | 85 | 12 |
| XY-S80-S65 | 80 | 190 | 150 | 70 | 85 | 12 |

Interface plate - profile on slider

The kit includes:
1x interface plate
$8 \times$ screws $+8 \times$ lock washers
to connect the plate on the
slider of the main axis
4x clamps
8 x screws +8 x lock washers
to connect the secondary
axis on the plate by means of clamps

| | | | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mod. | Size | A1 | A2 | D | E | | |
| XY-S65-P50 | 65 | 150 | 162 | 85 | 70 | Weight (g) | |
| XY-S80-P50 | 80 | 190 | 182 | 85 | 85 | 12 | |
| XY-S80-P65 | 80 | 190 | 185 | 100 | 85 | 12 | |

Interface plate－profile on slider－long arm

The kit includes：
$1 x$ interface plate
$8 x$ screws $+8 x$ lock washers to connect plate on the slider of the main axis
4x clamps
$8 x$ screws $+8 x$ lock washers to connect plate on the slider of the secondary axis by means of clamps

Mod．	Size	A1	A2	D	E	S	Weight（g）
XY－S50－P50－T	50	162	130	50	85	12	600
XY－S65－P50－T	65	170	150	65	85	12	750
XY－S65－P65－T	65	185	170	65	100	12	800
XY－S80－P50－T	80	185	190	85	85	12	960
XY－580－P65－T	80	185	190	85	100	12	1010
XY－S80－P80－T	80	200	190	85	120	12	1100

Interface plate－Series 6E cylinder on slider

The kit includes：
$1 x$ interface plate
$4 \times$ screws＋4x lock washers
to connect the plate on the
slider of the axis
$2 x$ clamps
$4 \times$ screws $+4 x$ lock washers
to fix the Series 6E cylinder by means of clamps

Mod．	Size	A1	A2	Weight（g）
XY S50－6E32	50	72	101	11
XY－S65－6E32	65	72	101	11
XY－S65－6E40	65	85	101	11
XY S65－6E50	65	95	110	12
XY－S80－6E32	80	75	101	12
$X Y-S 80-6 E 40$	80	85	101	12
$X Y-S 80-6 E 50$	80	95	110	12
$X Y$ S80－6E63	80	106	110	12

Interface plate - profile side on slider - left position

The kit includes: $1 x$ interface plate 8 x screws +8 x lock washers to connect the plate on the slider of the main axis, screws and nuts for slot to connect the plate on the slider of the secondary axis

Mod.	Size	A1	A2	D	E	S	Nr of holes	Weight (g)
XY-S50-LL50	50	130	145	50	55	11	4	450
XY-S65-LL50	65	160	160	50	70	11	4	500
XY-S65-LL65	65	170	180	65	70	12	8	550
XY-S80-LL50	80	200	175	50	85	12	4	750
XY-S80-LL65	80	210	195	65	85	12	8	870
XY-S80-LL80	80	210	195	80	85	12	8	900

Interface plate - profile side on slider - right position

Mod.	Size	A1	A2	D	E	S	Nr of holes	Weight (g)
XY-S50-LR50	50	130	145	50	55	11	4	450
XY-S65-LR50	65	160	160	50	70	11	4	500
XY-S65-LR65	65	170	180	65	70	12	8	550
XY-S80-LR50	80	200	175	50	85	12	4	750
XY-S80-LR65	80	210	195	65	85	12	8	870
XY-S80-LR80	80	210	195	80	85	12	8	900

Interface plate - Anti-rotation guides S. 45 / Cylinders S. 6E on slider

The kit includes:
$1 x$ interface plate
$8 \times$ screws $+8 \times$ lock washers to connect the plate on the slider
4x screws to connect the cylinder

Mod.	Size	A1	A2	D	E	S	${ }_{0} \mathrm{M}^{(H 10)}$	Y	Weight (g)
XY-S50-45N32	50	124	130	50	49	12	30	75	350
XY-S65-45N32	65	139	170	65	49	12	30	82.5	480
XY-S65-45N40	65	147.5	170	65	55	12	35	87	500
XY-S65-45N50	65	157	170	65	66.5	12	40	91.5	530
XY-580-45N40	80	167.5	190	85	55	12	35	97	660
XY-580-45N50	80	177	190	85	65	12	40	101.5	690
XY-580-45N63	80	190.5	190	85	75	12	45	110	740

Fixed interface plate

The kit includes:
$1 x$ interface plate
4x interfas
$8 \times$ clamps clamps on the plate

Mod.	Size	A1	A2	${ }_{0} \mathrm{D} 1$	${ }_{0}$ D2	H	11	12	5	Weight (g)
X-P50	50	95	140	9	5.5	6	45	80	8	275
X-P65	65	120	140	10.5	6.5	7	50	100	10	430
X-P80	80	120	160	13.5	8.5	9	50	100	12	570

5E/5V connection flange

Mod.	Size	X1	X2	X3	X4	X5	A1	A2	E	D	S	Weight (g)
YZ-50-5V50	50	105	121	147	79	-	81	130	64.5	63	13	335
YZ-65-5V50	65	112.5	136.5	16	87	124.5	99.5	140	64.5	76.5	13	445
YZ-65-5V65	65	130	154	179.5	104.5	-	101.5	140	84.5	76.5	13	460
YZ-80-5V50	80	120.5	146.5	185.5	81.5	133.5	118	190	64.5	78	13	635
YZ-80-5V65	80	137.5	163.5	202.5	98.5	150.5	118	190	84.5	78	15	770
YZ-80-5V80	80	141	183.5	222.5	118.5	-	120	190	99.5	78	15	825

Centering ring Mod．TR－CG

Supplied with：
$2 x$ centering rings in steel

Mod．	M（h8）	N	P
TR－CG－04	$\emptyset 4$	$\emptyset 2.6$	2.5
TR－CG－05	$\emptyset 5$	$\emptyset 3.1$	3
TR－CG－06	$\emptyset 6$	$\emptyset 4.1$	4
TR－CG－08	$\emptyset 8$	$\emptyset 5.1$	5
TR－CG－10	$\emptyset 10$	$\emptyset 6.1$	6
TR－CG－12	$\emptyset 12$	$\emptyset 8.1$	6

Kit to fix the inductive sensor

The kit includes：
$1 \times$ sensor dog
$2 x$ screws to fix the sensor dog
$1 x$ sensor supporting plate $2 x$ screws to connect the sensor supporting plate $2 x$ nuts for the slot

$$
a^{\prime}=\frac{0}{5}-i
$$

Mod．	Size	A	C	D	E	H1	H2	1	L	M	N1	N2	${ }_{0} 0$	P	Q	R	S	Weight（g）
SIS－M5－50／65	50－65	27	10	20	3.5	13	8.5	5.5	22	12	14.5	21	5.5	8	14	26	10	10
SIS－M8－65	65	27	10	20	3.5	13	8.5	5.5	25	15	10.5	24	8.5	10	18.5	30	15	10
SIS－M5－80	80	45	15	20	4.5	16	10.5	5.5	22	12	14.5	21	5.5	8	14	26	10	15
SIS－M8－80	80	45	15	20	4.5	16	10.5	5.5	25	15	10.5	24	8.5	10	18.5	30	15	15

Kit to connect the Series FR gearbox

The kit includes:
$1 x$ connection flange $4 \times$ screws $+4 \times$ lock washers to connect the flange
$1 \times$ locking set
$4 x$ screws $+4 x$ lock washers to connect the gearbox

Mod.	Size	Gearbox	E1	E2	5	${ }_{0}$ D1	${ }_{\otimes} \mathrm{D2}^{(\mathrm{H7})}$	LT	BCD	T1	T2	M	B	(A)	$\mathrm{J}\left(\mathrm{Kgmm}{ }^{2}\right)$	Weight (g)
FR-5E-50	50	GB-040	48	43	6	10	26	26	34	10	10	4	5.5	14	1.50	85
FR-5E-65	65	GB-060	63	60	7	14	40	40	52	11	11	5	7.4	30	5.49	140
FR-5E-80	80	GB-080	80	80	11	20	60	60	70	17	4	6	8.4	125	31.20	325

${ }^{(A)}$ value refers to ideal mounting and operating conditions. For further details, please contact service@camozzi.com

Kit to connect the gearbox - enhanced series (sizes 50, 65)

DIMENSIONS																
Mod.	Size	Gearbox	${ }_{0} \mathrm{D} 1$	${ }_{0} \mathrm{D} 2^{(H 7)}$	A	LS	${ }_{\bullet}{ }^{\text {BCD }}$	B	C	E	M	K	(A)	(B)	$\mathrm{J}\left(\mathrm{Kgmm}{ }^{2}\right)$	Weight (g)
FRH-5E-50	50	GB-060	14	40	4	35.3	52	8	51	50	5	7.4	12.5	25	13	170
FRH-5E-65	65	GB-080	20	60	4	40.3	70	10	59	65	6	9.4	17	34	50	530

${ }^{(A)}$ Continuously applicable torque, under ideal mounting and operating conditions. For further details, please contact service@camozzi. com
${ }^{(8)}$ Torque applicable for short intervals, under ideal mounting and operating conditions. For further details, please contact service@ camozzi.com

The kit includes：
$2 x$ connection flanges
$4 x$ screws $+4 x$ lock washers
$1 x$ expansion coupling
$4 x$ screws $+4 x$ lock washers
to fix the axis
$4 x$ screws $+4 x$ lock washers to fix the profile $4 x$ nuts $+4 x$ screws to fix the gearbox

Mod．	Size	Gearbox	${ }_{6} \mathrm{D1}^{(\mathrm{H} 7)}$	${ }_{0} \mathrm{D} 2$	A	LS	${ }_{0}{ }^{\text {BCD }}$	B	C	${ }_{6} \mathrm{E}$	K	G	（A）	（B）	$\mathrm{J}\left(\mathrm{Kgmm}{ }^{2}\right)$	Weight（g）
FRH－5E－80	80	GB－120	20	80	5	47.8	100	10	68	115	12	100	60	120	140	1000

${ }^{(A)}$ Continuously applicable torque，under ideal mounting and operating conditions．For further details，please contact service＠camozzi． com
${ }^{(B)}$ Torque applicable for short intervals，under ideal mounting and operating conditions．For further details，please contact service＠ camozzi．com

Direct connection kit for Stepper motor

The kit includes： 1x MTS－24 connection flange 4x screws＋ 4 lock washers 1x expansion coupling $1 x$ bushing（not present in FS－5E－50－0024）

Mod．	Size	Motor	${ }_{0} \mathrm{D} 1$	A	B	F1	F2	E	LS	TG	K	${ }_{6} \mathrm{M}$	H	N	（A）	（B）	$\mathrm{J}\left(\mathrm{Kgmm}{ }^{2}\right)$	Weight（g）
FS－5E－50－0024	50	MTS－24－．．．	8	4	37	47	45	60.5	21.3	47.1	M4	38.1	2.5	2.5	12.5	25	13	125
FS－5E－65－0024	65	MTS－24－．．．	8	4	36	65	60	60.5	22.8	47.1	M4	38.1	2.5	2.5	12.5	25	13	200

${ }^{(A)}$ Continuously applicable torque，under ideal mounting and operating conditions．For further details，please contact service＠camozzi． com
${ }^{(8)}$ Torque applicable for short intervals，under ideal mounting and operating conditions．For further details，please contact service＠ camozzi．com

Slot nut for sensor

Supplied with:
2x nuts

	Size	M	N	0	S	T
PCV-5E-CS-M3	$50-65-80$	M3	10.3	6.1	2.5	3.5
PCV-5E-CS-M4	$50-65-80$	M4	10.3	6.1	2.5	3.5

Slot nut 6 - rectangular type

Mod.		M	N	0	S
PCV-5E-C6-M4Q	$50-65$	M4	8	7	2

Slot nut 6 for front insertion

Mod.	Size	M	N	0	S	T
PCV-5E-C6-M4R	$50-65$	M4	12	6	3	4.5

Slot nut 8 with flexible flap

Mod.	Size	M	N	0	S	T
PCV-5E-C8-M5	80	M5	16	11.5	3.5	4.5
PCV-5E-C8-M6	80	M6	16	11.5	3.5	4.5

Parallel connection kit

The kit includes:
1x parallel shaft
$2 x$ expansion couplings

EXAMPLE:

PS-5E-65-1400 corresponds to a parallel connection for axes positioned at interaxis $\mathrm{I}=1400 \mathrm{~mm}$

INTERAXIS ACCORDING TO THE MAXIMUM ADMISSIBLE TORQUE

Size 50x50
$C_{\text {max }}=$ max applicable torque
$i=$ interaxis between the two 5 E axes
$01=$ lag error 0.1 mm
$02=$ lag error 0.2 mm
$03=$ lag error 0.3 mm

Size 65×65
$C_{\text {max }}=$ max applicable torque
$\mathrm{i}=\mathrm{in}$ teraxis between the two 5E axes
$01=\operatorname{lag}$ error 0.1 mm
$02=\operatorname{lag}$ error 0.2 mm
$03=\operatorname{lag}$ error 0.3 mm

Size 80×80
$C_{\text {max }}=$ max applicable torque
$i=i n t e r a x i s ~ b e t w e e n ~ t h e ~ t w o ~ 5 E ~ a x e s ~$
$01=\operatorname{lag}$ error 0.1 mm
$02=\operatorname{lag}$ error 0.2 mm $03=\operatorname{lag}$ error 0.3 mm

