MANUALE D'USO E MANUTENZIONE

SERIES D SERIES CX4 ETHERCAT V 1.0

Indice

1	Rac	comandazioni generali 1
	1.1	Trasporto e stoccaggio del prodotto
	1.2	Utilizzo 2
	1.3	Limitazioni d'utilizzo
	1.4	Manutenzione
	1.5	Informazioni ecologiche
2	Car	atteristiche e condizioni di utilizzo 4
3	Des	scrizione generale del sistema 6
4	Des	stinatari 7
5	Ins	tallazione 8
	5.1	Indicazioni generali per l'installazione
	5.2	Elementi di collegamento e segnalazione
		5.2.1 Connettore alimentazione elettrica
		5.2.2 Connettore alla rete EtherCAT
		5.2.3 Connettore USB
	5.3	Alimentazione elettrica
		5.3.1 Regole di attivazione degli elettropiloti
	5.4	Accessori collegabili
	5.5	Assemblaggio
		5.5.1 Rimozione e montaggio del modulo CX4
		5.5.2 Assemblaggio sottobasi elettrovalvole Serie D
		5.5.3 Sostituzione elettrovalvole Serie D
		5.5.4 Assemblaggio moduli I/O
		5.5.5 Sostituzione cover moduli I/O
6		essori 18
	6.1	Sottobase ed elettrovalvole Serie D
		6.1.1 Dati tecnici
		6.1.2 Coilvision
		6.1.3 Funzionalità
		6.1.4 Diagnostica sottobase
	6.2	Modulo Ingressi Digitali
		6.2.1 Funzionalità
		6.2.2 Collegamenti e segnalazioni del modulo a 8 ingressi di tipo M8
		6.2.3 Collegamenti e segnalazioni del modulo a 8 ingressi di tipo M12 24
		6.2.4 Collegamenti e segnalazioni del modulo a 16 ingressi
		6.2.5 Diagnostica modulo
	6.3	Modulo Uscite Digitali

INDICE

		6.3.1	Funzionalità
		6.3.2	Collegamenti e segnalazioni del modulo a 8 uscite di tipo M8
		6.3.3	Collegamenti e segnalazioni del modulo a 8 uscite di tipo M12
		6.3.4	Collegamenti e segnalazioni del modulo a 16 uscite
		6.3.5	Diagnostica modulo
	6.4	Modul	o Ingressi Analogici
		6.4.1	Formato dati
		6.4.2	Funzionalità
		6.4.3	Collegamenti e segnalazioni dei moduli
		6.4.4	Diagnostica modulo
		6.4.5	Modulo RTD (Resistance Temperature Detector)
		6.4.6	Modulo Termocoppie
		6.4.7	Modulo Bridge
		6.4.8	Modulo Tensione/Corrente
	6.5	Modul	o Uscite Analogiche
		6.5.1	Formato dati
		6.5.2	Funzionalità
		6.5.3	Collegamenti e segnalazioni dei moduli
		6.5.4	Diagnostica modulo
_	N		
7			ervizio 61
	7.1	_	amenti elettrici
	7.2		namento all'avvio
	7.3	Mappa 	
	7.4		zamento EtherCAT
	7.5	_	urazione tramite file ESI
	7.6	•	azione degli indirizzi
	7.7		ilici
	7.8	Dati ad	
		7.8.1	Variabili in lettura
		7.8.2	Comandi
		7.8.3	Parametrizzazione moduli
			7.8.3.1 Modulo CX4 EtherCAT
			7.8.3.2 Sottobasi ed elettrovalvole Serie D
			7.8.3.3 Ingressi digitali
			7.8.3.4 Uscite digitali
			7.8.3.5 Ingressi analogici
			7.8.3.6 Uscite analogiche
8	Dia	gnosti	ca 86
	8.1	Modul	o CX4
		8.1.1	Nodo EtherCAT
		8.1.2	Diagnostica del sistema CX4
		8.1.3	Elettrovalvola da sostituire

		8.1.4 Errore ratale sul dus di campo
		8.1.5 Allarme sovratemperatura
		8.1.6 Allarme sottotensione
		8.1.7 Allarme errore mappatura moduli I/O
		8.1.8 Allarme errore mappatura elettrovalvole
		8.1.9 Allarme di mappatura assente
		8.1.10 Allarmi elettrovalvole o moduli I/O
	8.2	Sottobase ed elettrovalvole Serie D
	8.3	Modulo Ingressi Digitali
	8.4	Modulo Uscite Digitali
	8.5	Modulo Ingressi Analogici
	8.6	Modulo Uscite Analogiche
9	Uvi	x 100
	9.1	Introduzione
	9.2	Informazioni generali
	,.L	9.2.1 Informazioni di stato
		9.2.2 Configurazione rete EtherCAT
		9.2.3 Variabili
		9.2.4 Allarmi
		9.2.5 Comandi
	9.3	Sottobase ed elettrovalvole Serie D
	7.5	9.3.1 Informazioni di stato
		9.3.2 Configurazione
		9.3.3 Dettagli
		9.3.4 Variabili
		9.3.5 Allarmi
		9.3.6 Comandi
	9.4	Modulo Ingressi Digitali
	,	9.4.1 Informazioni di stato
		9.4.2 Configurazione
		9.4.3 Variabili
		9.4.4 Allarmi
	9.5	Modulo Uscite Digitali
		9.5.1 Informazioni di stato
		9.5.2 Configurazione
		9.5.3 Variabili
		9.5.4 Allarmi
		9.5.5 Comandi
	9.6	Modulo Ingressi Analogici
		9.6.1 Informazioni di stato
		9.6.2 Configurazione
		9.6.3 Variabili

INDICE

		9.6.4	Allarmi	124
	9.7		lo Uscite Analogiche	
		9.7.1	Informazioni di stato	125
		9.7.2	Configurazione	126
		9.7.3	Variabili	127
		9.7.4	Allarmi	127
		9.7.5	Comandi	128
	9.8	UVIX G	iateway USB	129
		9.8.1	Pagina principale	129
		9.8.2	Configuratore rete WiFi	130
		9.8.3	Mappatura	130
		9.8.4	Aggiornamento firmware	130
	9.9	Comur	nicazione con applicazioni esterne	134
10	NF	CamA	PP	139
	10.1	Introd	uzione	139
	10.2	Pagina	a principale	140
	10.3	Inform	nazioni generali	141
	10.4	Inform	nazioni WiFi	142
	10.5	Config	gurazione bus di campo	143
	10.6	Richie	sta di mappatura	144
11	Co	ntatti		145

Raccomandazioni generali

▲ Vi preghiamo di rispettare le raccomandazioni all'uso sicuro descritte nel presente documento:

- Alcuni pericoli sono associabili al prodotto solamente dopo che è stato installato sulla macchina / attrezzatura. È compito dell'utilizzatore finale individuare tali pericoli e ridurre i rischi ad essi associati.
- Per informazioni riguardanti l'affidabilità dei componenti, contattare Camozzi Automation.
- Prima di procedere con l'utilizzo del prodotto leggere attentamente le informazioni contenute nel presente documento.
- Conservare il presente documento in luogo sicuro e a portata di mano per tutto il ciclo di vita del prodotto.
- Trasferire il presente documento ad ogni successivo detentore o utilizzatore.
- Le istruzioni contenute nel presente manuale devono essere osservate congiuntamente alle istruzioni ed alle ulteriori informazioni, che riguardano il prodotto descritto nel presente manuale, che possono essere reperite utilizzando i seguenti riferimenti:
 - Sito web http://www.camozzi.com
 - Catalogo generale Camozzi
 - Servizio assistenza tecnica Camozzi
- Montaggio e messa in servizio devono essere effettuati solo da personale qualificato e autorizzato, in base alle presenti istruzioni.
- È responsabilità del progettista dell'impianto / macchinario eseguire correttamente la scelta del componente più opportuno in funzione dell'impiego necessario.
- È raccomandato l'uso di apposite protezioni per minimizzare il rischio di lesioni alle persone.
- Per tutte quelle situazioni di utilizzo non contemplate in questo manuale e in situazioni in cui potrebbero essere causati danni a cose, persone o animali, contattare prima Camozzi.
- Non effettuare interventi modifiche non autorizzate sul prodotto. In tal caso, eventuali danni provocati a cose persone o animali, sono da ritenersi responsabilità dell'utilizzatore.
- Si raccomanda di rispettare tutte le norme di sicurezza interessate dal prodotto.
- Non intervenire sulla macchina/impianto se non dopo aver verificato che le condizioni di lavoro siano sicure.
- Prima dell'installazione o della manutenzione assicurarsi che siano attivate le posizioni di blocco di sicurezza specificamente previste, in seguito interrompere l'alimentazione elettrica (se necessario) e l'alimentazione di pressione dell'impianto, smaltendo tutta l'aria compressa residua presente nell'impianto e disattivando l'energia residua immagazzinata in molle, condensatori, recipienti e gravità.
- Dopo l'installazione o la manutenzione è necessario ricollegare l'alimentazione di pressione ed elettrica (se necessario) dell'impianto e controllare il regolare funzionamento e la tenuta del prodotto. In caso di mancanza di tenuta o di mal funzionamento, il prodotto non deve essere messo in funzione.
- Il prodotto può essere messo in esercizio solo nel rispetto delle specifiche indicate, se queste spe-

- cifiche non vengono rispettate il prodotto può essere messo in funzione solo dopo autorizzazione da parte di Camozzi.
- Evitare di ricoprire gli apparecchi con vernici o altre sostanze tali da ridurne la dissipazione termica.

1.1 Trasporto e stoccaggio del prodotto

- Adottare tutti gli accorgimenti possibili per evitare il danneggiamento accidentale del prodotto durante il trasporto, in caso siano disponibili utilizzare gli imballi originali.
- Rispettare il campo di temperatura per lo stoccaggio di -10 ÷ 50 °C.

1.2 Utilizzo

- Accertarsi che la tensione della rete di distribuzione e che tutte le condizioni di esercizio rientrino nei valori ammissibili.
- Il prodotto può essere messo in esercizio solo nel rispetto delle specifiche indicate, se queste specifiche non vengono rispettate il prodotto può essere messo in funzione solo dopo autorizzazione da parte di Camozzi.
- Rispettare le indicazioni riportate sulla targhetta di identificazione.

1.3 Limitazioni d'utilizzo

- Non superare le specifiche tecniche riportate nel capitolo 2 (Caratteristiche e condizioni di utilizzo generali) e sul catalogo generale Camozzi.
- Non installare il prodotto in ambienti in cui l'aria stessa può causare pericoli.
- A meno di specifiche destinazioni d'uso, non utilizzare il prodotto in ambienti in cui si potrebbe verificare il diretto contatto con gas corrosivi, prodotti chimici, acqua salata, acqua o vapore.

1.4 Manutenzione

- Operazioni di manutenzione eseguite non correttamente possono compromettere il buon funzionamento del prodotto e causare danni alle persone circostanti.
- Verificare le condizioni per prevenire l'improvviso rilascio di pezzi, quindi sospendere l'erogazione dell'alimentazione e permettere lo scarico di tensioni residue prima di intervenire.
- Verificare la possibilità di far revisionare il prodotto presso un centro di assistenza tecnica.
- Non smontare mai un'unità in tensione.
- Isolare il prodotto elettricamente prima della manutenzione.
- Rimuovere sempre gli accessori prima della manutenzione.
- Assicurarsi sempre di indossare la corretta attrezzatura di sicurezza prevista dagli enti locali e dalle vigenti disposizioni legislative.
- In caso di manutenzione, sostituzione di pezzi di usura, utilizzare solamente kit originali Camozzi e fare eseguire l'operazione solamente a personale specializzato autorizzato. In caso contrario l'omologazione del prodotto perde ogni sua validità.

1.5 Informazioni ecologiche

- Alla fine del ciclo di vita del prodotto, si raccomanda la separazione dei materiali per consentirne il recupero.
- Rispettare le norme vigenti nel proprio Paese in materia di smaltimento.
- Il prodotto e le parti che lo compongono sono conformi alle normative ROHS, REACH.

Caratteristiche e condizioni di utilizzo

SEZIONE ELETTRICA				
Tipo di connessione	M12 - 5 poli			
Tensione di alimentazione Logica	24 V DC +/-25%			
Tensione di alimentazione Potenza	24 V DC +/-10%			
Assorbimento massimo delle valvole	2,5 A			
Nr. massimo posizioni valvola	64 (128 elettropiloti)			
Potenza elettropilota	1W (riduzione del 50% dopo 100 ms)			
Lunghezza massimo del cavo	20 m			
Protocollo	EtherCAT EtherCAT.			

		SEZI	ONE PNEUMATICA	<u> </u>		
Versioni		D1	D2	D4	D5	
Costruzione valvola			A spola co	on guarnizioni		
Funzioni valvola		5/2 monostabile e bistabile 2x3/2 NC 2x3/2 NO				
		5/3 CC -	CP – CO	1X3/2	2 NC+1X3/2 NO	
	Согро		All	uminio		
	Spola		Alluminio			
Materiali	Basi	Tecnopolimero	Tecnopolimero	Alluminio	Tecnopolimero	
	Fondelli		Tecnopolimero			
	Guarnizioni		HNBR			
Conr	nessioni	Utilizzi 2 e 4				
Com	103310111	Filetto (solo D4) o boccole, dimensioni del tubo variabile in base al passo				
Temp	peratura	0 ÷ 50 °C				
Caratteristica aria		Aria compressa filtrata e non lubrificata in classe 7.4.4 secondo ISO 8573-1:2010. Nel caso sia necessaria la lubrificazione, utilizzare esclusivamente oli con viscosità max. 32 Cst e la versione con servo pilotaggio esterno. La qualità dell'aria al servo pilotaggio deve essere in classe 7.4.4 secondo ISO 8573-1:2010 (non lubrificare).				
Passo	valvole	10,5 mm	16 mm	25 mm	10,5 e 16 mm	
Pressione di lavoro		-0,9 ÷ 10 bar				
Pression	e nilotzagio	2,5 ÷ 7 bar 4,5 ÷ 7 bar				
Pressione pilotaggio		(con pressione di lavoro superiore ai 6 bar per la versione 2x3/2)				
Po	ortate	250 Nl/min	950 Nl/min	2000 Nl/min	250 ÷ 950 Nl/min	
Posizione	di montaggio	Qualsiasi				
Grado di protezione		IP65				

Descrizione generale del sistema

Il modulo CX4 EtherCAT è un dispositivo che consente di pilotare elettrovalvole pneumatiche Serie D e gestire moduli di I/O digitali e analogici collegandolo ad una rete EtherCAT. Il CX4 è composto da connettori di alimentazione, connettori d'ingresso e d'uscita per il bus di campo di tipo EtherCAT e LED per la diagnostica del sistema. Sul lato destro del CX4 è possibile collegare le elettrovalvole Serie D, mentre sul lato sinistro è possibile collegare i moduli I/O digitali e analogici.

Nomenclatura

Il modulo CX4 può essere utilizzato collegando solo i moduli di ingressi e uscite; in questo caso il dispositivo prenderà il nome di modulo **Serie CX4 Stand Alone**. Mentre, se al CX4 sono collegate delle elettrovalvole della Serie D (con o senza moduli I/O) dalla parte pneumatica, il dispositivo diventa un'isola di valvole e viene chiamata **Isola di Valvole Serie D Fieldbus**.

Il modulo CX4, sia in configurazione Serie CX4 Stand Alone sia isola di valvole Serie D fieldbus, è una soluzione dedicata all'Industria 4.0 perché è un dispositivo SMART in grado di connettersi ad altri dispositivi o reti tramite diversi protocolli (es. WiFi, USB, NFC) per lo scambio di informazioni. Il sistema può trasmettere i dati delle principali variabili monitorate, la diagnostica di tutti i componenti costituenti l'isola e, inoltre, permette di effettuare delle operazioni di configurazione sia dell'isola in generale sia dei singoli moduli collegati. Le modalità di interfacciamento smart con l'isola sono:

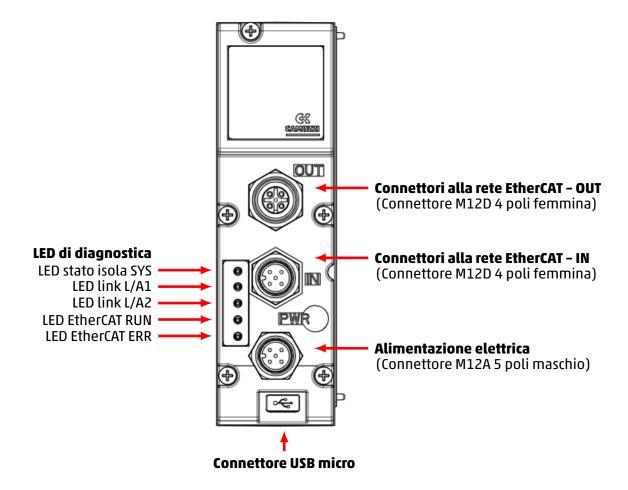
• **Camozzi UVIX** (*Universal Visual Interface*), un software installabile su un pc/server/gateway accessibile tramite USB oppure inserito all'interno di una rete aziendale e accessibile da altri pc (cap. 9).

• **NFCamApp** (*NFC Camozzi Application*), un'applicazione smartphone, sia versione per Android che iOS (cap. 10).

N.B. Il sistema, configurato come isola di valvole Serie D Seriale, è dotato di tecnologia **COILVISION** con la quale viene eseguito un monitoraggio sul corretto funzionamento dell'elettrovalvola. Ogni azionamento dell'elettropilota, in diverse configurazioni di ciclica e condizioni ambientali, viene analizzato per acquisire informazioni che, elaborate da algoritmi software, permettono di diagnosticare e predire lo stato di salute del componente (par. 6.1.2).

Destinatari

Il manuale è rivolto esclusivamente ad esperti qualificati nelle tecnologie di controllo e automazione che abbiano esperienza nelle operazioni di installazione, messa in servizio, programmazione e diagnostica di controllori a logica programmabile (PLC) e sistemi Bus di Campo (Fieldbus).


Installazione

5.1 Indicazioni generali per l'installazione

Per motivi di sicurezza dell'operatore e per danni funzionali al sistema, prima di iniziare qualsiasi intervento di installazione o manutenzione, scollegare:

- L'alimentazione dell'aria.
- L'alimentazione elettrica dell'elettronica di controllo e delle uscite/elettrovalvole.

5.2 Elementi di collegamento e segnalazione

5.2.1 Connettore alimentazione elettrica

Il connettore per l'alimentazione elettrica è un M12A maschio a 5 poli.

N.B. Per connettere il sistema alla rete elettrica si consiglia di utilizzare i connettori del catalogo Camozzi:

• CS-LF04HB, connettore diritto per alimentazione elettrica.

PIN	Segnale	Descrizione	Simbolo
1	L24V	Alimentazione 24 Vdc (logica, ingressi digitali, I/O analogici): collegare al polo positivo dell'alimentazione 24 Vdc (riferita a GND).	
2	Alimentazione 24 Vdc (uscite digitali e valvole): collegare al polo positivo dell'alimentazione 24 Vdc (riferita a GND).		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
3 GND		Comune (riferimento pin 1 e 2): collegare al polo negativo dell'alimentazione 24 Vdc (obbligatorio).	• \(\sqrt{5} \)
4	EARTH	Connessione di terra	
5	NC	Non Connesso	

5.2.2 Connettore alla rete EtherCAT

I connettori per la rete EtherCAT (IN e OUT) sono di tipo M12D femmina a 4 poli.

PIN	Segnale	Descrizione	Simbolo
1	TD+	Dati di trasmissione (+)	2
2	RD+	Dati di ricezione (+)	(1) (0) (3)
3	TD-	Dati di trasmissione (-)	
4	RD-	Dati di ricezione (-)	•

N.B. Per evitare malfunzionamenti di cablaggi difettosi, si consiglia di connettere il sistema alla rete EtherCAT utilizzando i cavi precablati da catalogo Camozzi:

- CS-SB04HB-D100, cavo costampato con connettore M12D diritto lunghezza 1m.
- CS-SB04HB-D500, cavo costampato con connettore M12D diritto lunghezza 5m.
- CS-SB04HB-DA00, cavo costampato con connettore M12D diritto lunghezza 10m.

Per il collegamento al controllore è possibile utilizzare il seguente cavo da catalogo Camozzi:

• CS-SE04HB-F500, cavo costampato con connettore RJ45 – M12D.

5.2.3 Connettore USB

Il connettore per la comunicazione USB è di tipo standard versione micro. Il connettore permette di collegare il CX4 all'interfaccia UVIX per monitoraggio o configurazione.

N.B. A catalogo Camozzi è possibile trovare il connettore USB dedicato:

• G11W-G12W-2, cavo standard con connettore micro USB lunghezza 2 m.

5.3 Alimentazione elettrica

L'alimentazione elettrica è separata in *logica* (L24V), che permette di alimentare i bus di comunicazione, le sottobasi della parte pneumatica e i moduli I/ O, e in *power* (P24V), che alimenta le valvole e le uscite digitali. Pertanto, perché il sistema funzioni, è indispensabile collegare l'alimentazione di *logica*, altrimenti il CX4 rimane spento. Le due alimentazioni separate permettono, se necessario, di disinserire l'alimentazione delle valvole mentre la linea di alimentazione dei bus resta attiva. La mancanza dell'alimentazione di *power* viene segnalata dal lampeggio rosso del Led stato isola SYS. Questo problema viene segnalato anche tramite messaggio via rete per provvedere ad una corretta gestione dell'allarme.

Se i carichi o gli ingressi collegati al nodo iniziale dovessero richiedere delle tolleranze del valore della tensione di alimentazione più strette, la tensione di alimentazione di potenza del nodo dovrà rispettare queste ultime.

N.B. La tensione nominale di alimentazione del modulo CPU è 24 Vdc ±10%.

5.3.1 Regole di attivazione degli elettropiloti

In funzionamento normale standard, le elettrovalvole sono attivate, per 100 ms, con una potenza di 1 W (@ 24 V la corrente assorbita è dunque 41,6 mA). Successivamente le elettrovalvole sono mantenute attivate riducendo la potenza assorbita al 50% del valore iniziale, mediante una tecnica di comando PWM. La tensione di alimentazione ammessa per l'isola di valvole serie D è 24 Vdc ± 10%, dunque il range utile è 21,6 Vdc ÷ 26,4 Vdc. Le correnti assorbite dagli elettropiloti delle elettrovalvole corrispondenti al range di alimentazione sono 39 mA ÷ 48 mA (in condizioni tipiche) nei primi 100 ms di attivazione e successivamente 19,5 mA ÷ 24 mA in fase di riduzione di potenza dovuta all'utilizzo del PWM. Il funzionamento continuativo dell'isola di valvole è garantito per un assorbimento massimo di 2,5 A. Nelle condizioni peggiori (massimo assorbimento di corrente per 26,4 Vdc di alimentazione) è possibile attivare simultaneamente fino a 50 elettropiloti con tutte le elettrovalvole dell'isola spente. Successivamente, è possibile procedere adottando la seguente formula:

N° elettropiloti da comandare simultaneamente = 50 - (0,6 x N° elettropiloti attivi)

Esempio

- Se 10 piloti sono già attivi, si possono attivare contemporaneamente 44 piloti.
- Se i piloti già attivi sono 20 si possono attivare simultaneamente 38 piloti.

N.B. Il massimo numero di piloti attivi contemporaneamente è 80. Ogni attivazione successiva rispetto al gruppo precedente di elettropiloti deve avvenire dopo 150 ms.

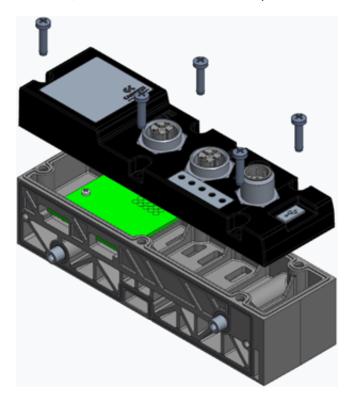
5.4 Accessori collegabili

Al modulo CX4 possono essere collegate elettrovalvole pneumatiche Serie D oppure moduli I/O digitali ed analogici. Ecco l'elenco completo dei dispositivi collegabili al CX4, con i rispettivi riferimenti ai dettagli tecnici presenti all'interno del manuale.

- Sottobase ed elettrovalvole Serie D di tre taglie differenti (par. 6.1).
- Modulo di ingressi digitali a 8 o 16 canali (par. 6.2).
- Modulo di uscite digitali a 8 o 16 canali (par. 6.3).
- Modulo di ingressi analogici (par. 6.4):
 - Modulo per RTD (par. 6.4.5).
 - Modulo per Termocoppie 6.4.6).
 - Modulo per Bridge (par. 6.4.7).
 - Modulo per Tensione/Corrente (par. 6.4.8).
- Modulo di uscite analogiche (par. 6.5).

5.5 Assemblaggio

5.5.1 Rimozione e montaggio del modulo CX4

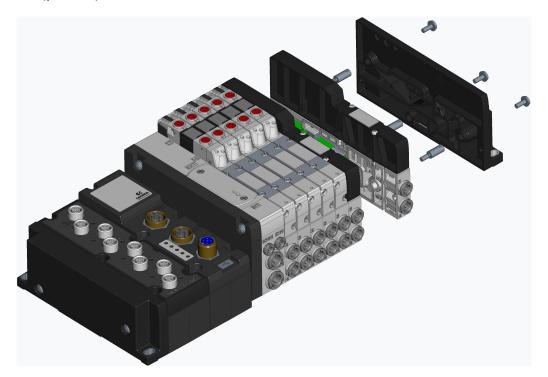

Per rimuovere la cover del modulo CX4 procedere come segue:

- 1. Togliere alimentazione al modulo CX4 per evitare danneggiamenti al dispositivo o danni all'utente.
- 2. Svitare le 5 viti.
- 3. Estrarre la cover del modulo CX4 sulla sua base di collegamento elettrico.

Per montare una cover del modulo CX4 seguire i passi successivi:

- 1. Togliere alimentazione al modulo CX4 per evitare danneggiamenti al dispositivo o danni all'utente.
- 2. Controllare che le guarnizioni facciano tenuta e non siano danneggiate.
- 3. Montare dall'alto la cover del modulo CX4 sulla sua base fino alla battuta.
- 4. Avvitare le 5 viti (Coppia max 0,6 Nm).

N.B. Dopo una modifica al sistema, sarà necessario effettuare l'operazione di mappatura (par. 7.3).



5.5.2 Assemblaggio sottobasi elettrovalvole Serie D

Per togliere o aggiungere le sottobasi per le elettrovalvole è necessario proseguire come segue:

- 1. Togliere l'alimentazione al modulo CX4 per evitare danneggiamenti al dispositivo o danni all'utente.
- 2. Svitare le 3 viti del coperchio alla destra del CX4 ed aprire il pacco delle sottobasi di elettrovalvole.
- 3. Togliere dai passanti le sottobasi fino a quella che si vuole sostituire o dove si vuole aggiungerne una nuova.
- 4. Una volta fatta la sostituzione/aggiunte delle sottobasi, collegare le sottobasi tra di loro fino alla battuta in modo che i connettori elettrici facciano il corretto contatto.
- 5. Rimontare il coperchio e avvitare le 3 viti (Coppia max 0,9 Nm).

N.B. Ogni volta che le sottobasi sono aggiunte, rimosse o spostate è necessario effettuare l'operazione di mappatura (par. 7.3).

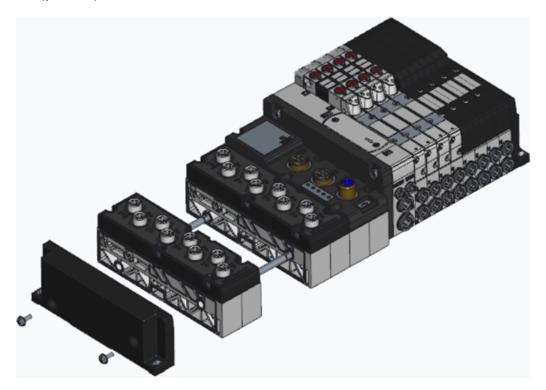
^{*} Esempio per Isola di Valvole Serie D1.

5.5.3 Sostituzione elettrovalvole Serie D

Per togliere o aggiungere le elettrovalvole Serie D dalle corrispondenti sottobasi di egual taglia, è necessario prosequire come seque:

- 1. Svitare le 2 viti bloccanti l'elettrovalvola.
- 2. Togliere l'elettrovalvola con cautela e perpendicolarmente all'isola. Evitare di piegare l'elettrovalvola per non danneggiare la scheda di connessione con la sottobase od i guida luce.
- 3. Aggiungere l'elettrovalvola sempre in maniera perpendicolare e con cautela per evitare le problematiche descritte al punto precedente.
- 4. Avvitare le due vite per la tenuta sulla sottobase (Coppia max 0,25 Nm (D1/D5), 0,5 Nm (D2), 2,0 Nm (D4)).
- 5. Resettare le informazioni della sottobase dall'interfaccia UVIX o dal controllore/PLC.

^{*} Esempio per Isola di Valvole Serie D1.



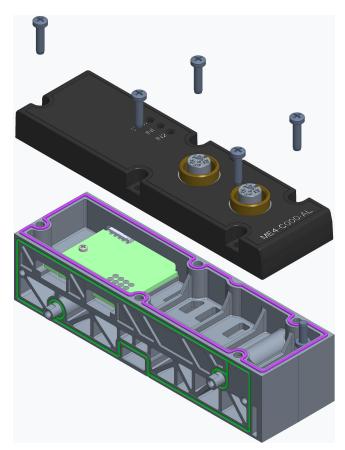
5.5.4 Assemblaggio moduli I/O

Per togliere o aggiungere i moduli I/O è necessario proseguire come segue:

- 1. Togliere alimentazione al modulo CX4 per evitare danneggiamenti al dispositivo o danni all'utente.
- 2. Svitare le 2 viti del coperchio in fondo all'isola ed aprire il pacco dei moduli I/O.
- 3. Togliere dai passanti i moduli fino al modulo che si vuole sostituire o dove si vuole aggiungere un modulo nuovo.
- 4. Una volta fatta la sostituzione/aggiunte del modulo I/O collegare i moduli tra di loro fino alla battuta in modo che i connettori elettrici facciano il corretto contatto.
- 5. Rimontare il coperchio e avvitare le 2 viti (Coppia max 0,9 Nm).

N.B. Ogni volta che i moduli I/O sono aggiunti, rimossi o spostati, è necessario effettuare l'operazione di mappatura (par. 7.3).

^{*} Esempio per Isola di Valvole Serie D1.


5.5.5 Sostituzione cover moduli I/O

Per rimuovere la cover di un modulo I/O procedere come segue:

- 1. Togliere alimentazione al modulo CX4 per evitare danneggiamenti al dispositivo o danni all'utente.
- 2. Svitare le 5 viti.
- 3. Estrarre la cover del modulo I/O dalla sua base di collegamento elettrico.

Per montare una cover di un modulo I/O seguire i passi successivi:

- 1. Togliere alimentazione al modulo I/O per evitare danneggiamenti al dispositivo o danni all'utente.
- 2. Controllare che le guarnizioni facciano tenuta e non siano danneggiate.
- 3. Montare dall'alto la cover del modulo CX4 sulla sua base fino alla battuta.
- 4. Avvitare le 5 viti (Coppia max 0,6 Nm).
- N.B. Dopo una modifica al sistema, sarà necessario effettuare l'operazione di mappatura (par. 7.3).

Accessori

6.1 Sottobase ed elettrovalvole Serie D

Il CX4 può essere utilizzato per realizzare un'isola di valvole Serie D Seriale collegando dalla parte pneumatica le sottobasi che permettono di collegare le elettrovalvole di tipo Serie D. Le elettrovalvole Serie D sono disponibili in tre taglie in funzione del passo.

• Sottobase ed elettrovalvola Serie D1 passo 10,5 mm

• Sottobase ed elettrovalvola Serie D2 passo 16 mm

• Sottobase ed elettrovalvola Serie D4 passo 25 mm

6.1.1 Dati tecnici

Caratteristica	Valore
Costruzione	A spola bilanciata
Funzioni valvola	2x3/2 NC/NO/NC+NO; 5/2; 5/3 CC/CO/CP
Materiali	corpo, spola = AL; basi, fondelli = tecnopolimero; basi= AL solo D4; guarnizioni = HNBR
Attacchi	Boccole vari Ø (D1-D2-D5) attacchi filettati G3/8 (D4)
Temperatura ambiente	0÷50 °C
Fluido	 Aria compressa filtrata e non lubrificata in classe 7.4.4 secondo ISO 8573-1:2010. Nel caso sia necessaria la lubrificazione, utilizzare solo oli con viscosità max. 32 Cst e la versione con servo pilotaggio esterno. La qualità dell'aria al servo pilotaggio deve essere in classe 7.4.4 secondo ISO 8573-1:2010.
Tensioni	24 Vdc
Tolleranza sulla tensione	±10%
Assorbimento	1 W
Classe d'isolamento	classe F

6.1.2 Coilvision

Le sottobasi delle elettrovalvole Serie D sono dotate di tecnologia **COILVISION**. Questa tecnologia è stata sviluppata per monitorare costantemente i parametri funzionali dell'elettropilota che aziona la spola. Ogni azionamento dell'elettropilota, in diverse configurazioni di ciclica e condizioni ambientali, viene analizzato per acquisire informazioni che, elaborate da algoritmi software, permettono di diagnosticare e predire lo stato di salute del componente.

L'informazione sullo stato di salute dell'elettrovalvola è un dato che viene fornito dal modulo CX4 al PLC e anche tramite l'interfaccia browser UVIX sotto forma di numero percentuale e indicatore a *gauge* (par. 9.3.4). Inoltre, sempre tramite UVIX, è possibile ricevere un avviso per la sostituzione dell'elettrovalvo-

la nel momento in cui le sue prestazioni sono degradate (par. 9.3.5). Di seguito, tutte le informazioni che si possono ottenere grazie alla tecnologia COILVISION.

6.1.3 Funzionalità

La sottobase che gestisce le elettrovalvole Serie D può essere configurata nella gestione del funzionamento del failsafe e nella gestione degli errori di pilotaggio delle elettrovalvole stesse .

Il failsafe permette alla sottobase, in mancanza di comunicazione con il modulo CX4, di impostare lo stato dei comandi che pilotano le elettrovalvole in modo da evitare situazioni dannose e pericolose per dispositivi o utenti. I parametri configurabili sono l'abilitazione del failsafe, di default non abilitato, e lo stato in cui si vogliono impostare i piloti dell'elettrovalvole, di default il pilota è spento.

L'abilitazione o meno degli allarmi bloccanti (*Error Enable*) inerenti al funzionamento del pilota è anch'esso configurabile, di default non abilitato. Se abilitato, gli allarmi non rientrano semplicemente con la disattivazione del pilota ma deve essere riavviata l'intera sottobase e, pertanto, l'intero sistema. **N.B.** Gli allarmi possibili sugli elettropiloti sono descritti al paragrafo 6.1.4. Solo gli allarmi di pilota interrotto e di sovracorrente del pilota possono essere resi bloccanti.

6.1.4 Diagnostica sottobase

La diagnostica delle sottobasi per le elettrovalvole è definita da un lampeggio codificato del led giallo associato al singolo elettropilota (La sottobase D4 ha due LED gialli di diagnostica per ogni elettropilota con identico comportamento).

Stato modulo ed allarmi	Stato del LED	Descrizione dello stato e soluzioni degli allarmi	
Funzionamento	GIALLO OFF	L'elettrovalvola non è comandata.	
normale senza allarmi	GIALLO ON	L'elettrovalvola è stata azionata correttamente.	

Stato modulo ed allarmi	Stato del LED	Descrizione dello stato e soluzioni degli allarmi
Anomalia durante l'attivazione dell'elettropilota	1 lampeggio GIALLO @100 ms ogni 1 s	L'elettropilota non si è energizzato correttamente. Soluzione : l'allarme non è bloccante pertanto riprovare ad azionare nuovamente l'elettrovalvola. Se il problema persiste, sostituire l'elettrovalvola.
Elettropilota interrotto	2 lampeggi GIALLO @100 ms ogni 1 s	L'elettropilota è interrotto (circuito aperto). Questo allarme può essere bloccante (se configurato come tale) e pertanto è necessario riavviare l'isola. Soluzione : sostituire l'elettrovalvola.
Sovracorrente elettropilota	3 lampeggi GIALLO @100 ms ogni 1 s	Il consumo di corrente dell'elettropilota è eccessivo e pertanto l'elettrovalvola viene spenta automaticamente. Soluzione: sostituire l'elettrovalvola.
Sovratemperatura elettropilota	3 lampeggi GIALLO @100 ms ogni 1 s	La temperatura dell'elettropilota è eccessiva. Questo allarme può essere bloccante (se configurato come tale) e pertanto è necessario riavviare l'isola. Soluzione : togliere il comando di ON sull'elettrovalvola e lasciare raffreddare il pilota. Se il problema persiste, sostituire l'elettrovalvola.
Sovratemperatura sottobase	5 lampeggi GIALLO @100 ms ogni 1 s	La temperatura dell'elettronica della sottobase è eccessiva. Soluzione : spegnere l'isola e lasciare raffreddare il dispositivo. Se il problema persiste, contattare l'assistenza e sostituire la sottobase.

N.B. Gli allarmi di elettropilota interrotto e di sovracorrente possono essere configurati come bloccanti e, pertanto, ripristinabili solo riavviando l'intero sistema.

6.2 Modulo Ingressi Digitali

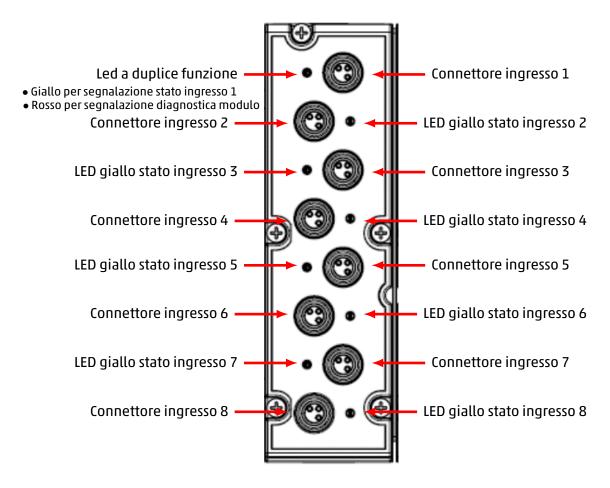
Il modulo di ingressi digitali permette di monitorare 8 o 16 segnali digitali. Possono essere collegati sensori digitali a 2 o 3 fili, con la possibilità di alimentare i sensori direttamente per mezzo del modulo (alimentazione a 24 V).

Il modulo di ingressi digitali, dopo essere collegato al modulo CX4, deve essere mappato dall'isola (par. 7.3). Se la procedura di mappatura termina correttamente, il modulo di ingressi digitali attende la ricezione dei parametri di configurazione dal modulo CX4 (attesa massima di 1 minuto). Ricevuti tali parametri, il modulo entra in stato di funzionamento normale e gli ingressi digitali possono essere letti. In caso contrario, se la procedura di mappatura non termina correttamente, il modulo rimane in stato di errore disattivando qualsiasi funzionalità operativa.

Per ogni ingresso è presente un LED di diagnostica dedicato, mentre per la diagnostica generale viene utilizzato il LED del primo canale (par. 6.2.5).

6.2.1 Funzionalità

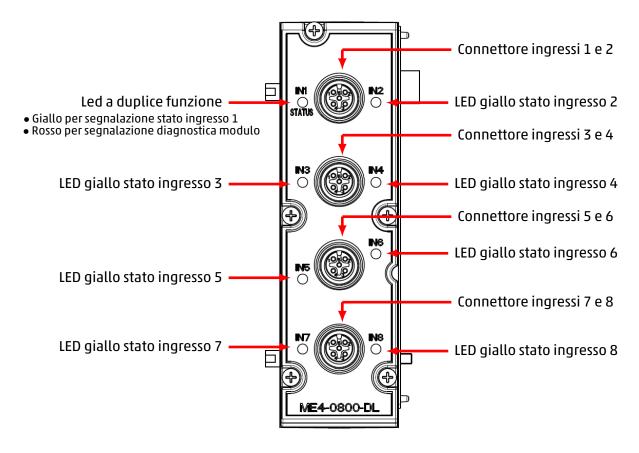
Il modulo di ingressi digitali consente di agire sia sulla logica di lettura degli ingressi, sia sulle caratteristiche temporali dei segnali letti.


Per la logica dei segnali, è possibile scegliere la polarità di ciascun canale (*Activation Mode*), ovvero la modalità di attivazione: ogni canale può essere attivo alto o attivo basso. Nel primo caso, il canale assumerà stato logico alto in presenza di tensione in ingresso e basso in assenza di tensione; nel secondo caso, varrà il viceversa.

Per quanto riguarda invece le caratteristiche temporali dei segnali in ingresso, la configurazione non avviene canale per canale: i valori associati ai parametri in causa hanno effetto su tutti i canali di ingresso del modulo. In particolare, è possibile specificare due parametri: il tempo minimo di attivazione ed il periodo minimo di rilettura degli ingressi. Il primo parametro (*Minimum Activation Time*) indica l'ampiezza dell'intervallo di tempo minimo in cui il segnale in ingresso a un determinato canale deve mantenere lo stesso stato, affinché a tale canale sia associato lo stato logico corrispondente: scopo di tale procedura è filtrare i segnali con livello instabile (*anti-bounce*). Il secondo parametro (*Extension Time*) subentra dopo che il filtro anti-bounce ha accettato il valore in ingresso, facendo sì che il modulo non risponda a variazioni troppo veloci dei segnali in ingresso.

- Al tempo t₀ si verifica una variazione degli ingressi non filtrata dal sistema anti-bounce.
- Al tempo $t_1 > t_0$ si ha un'ulteriore variazione. A questo punto, possono verificarsi due condizioni:
 - $t_1-t_0 \ge Extension\ Time$: il canale assumerà lo stato dovuto al valore del segnale in ingresso all'istante t_1 .
 - $t_1-t_0 < Extension Time$: il canale viene messo in uno stato di attesa per rilettura: al tempo $t_2=t_0+Extension Time$, l'ingresso viene letto forzatamente e se il valore rilevato differisce da quello acquisito al tempo t_0 , il canale assume il nuovo stato, associato al valore attuale del segnale. In caso contrario (ovvero: all'istante t_2 il valore dell'ingresso è tornato uguale a quello presente all'istante t_0) il canale non rileverà alcuna variazione del segnale.

6.2.2 Collegamenti e segnalazioni del modulo a 8 ingressi di tipo M8

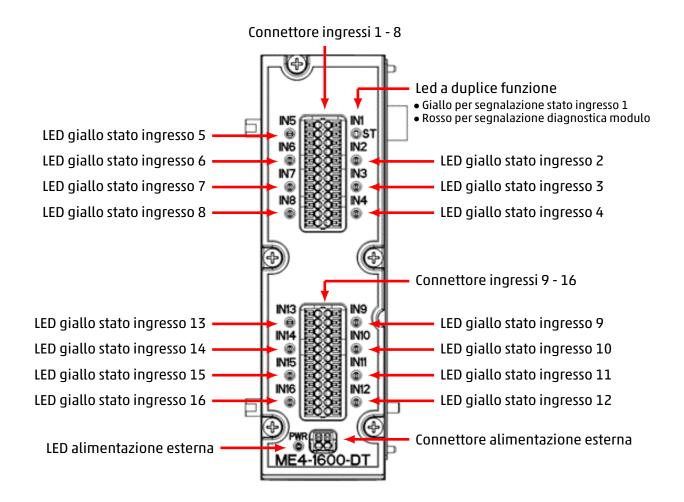

Piedinatura connettori M8

PIN	Seganle	Descrizione	Simbolo
1	VCC	Alimentazione 24 Vdc per l'esterno	4
3	GND	Riferimento di massa	(3) (0 0) (1)
4	Input	Ingresso (max 100 mA per ogni ingresso)	

N.B. Per i moduli ingressi digitali è disponibile a catalogo Camozzi il connettore M8 a cablare 3 poli maschio (cod. CS-DM03HB).

6.2.3 Collegamenti e segnalazioni del modulo a 8 ingressi di tipo M12

Piedinatura connettori M12


PIN	Segnale	Descrizione	Simbolo
1	VCC	Alimentazione 24 Vdc per l'esterno	
2	Input n+1	Ingresso n+1 (max 100 mA per ogni ingresso)	2
3	GND	Riferimento di massa	(1 (0 0 0) (3) (5) (4)
4	Input n	Ingresso n (max 100 mA per ogni ingresso)	
5	NC	Non connesso	

N.B. Per i moduli di ingressi digitali sono disponibili a catalogo Camozzi i seguenti connettori.

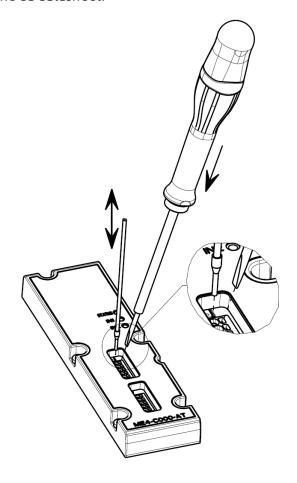
- A cablare metallico, diritto, M12 A 5 poli maschio (cod. CS-LM05HC).
- A cablare, diritto, M12 A 5 poli maschio DUO (cod. CS-LD05HF).

6.2.4 Collegamenti e segnalazioni del modulo a 16 ingressi

Piedinatura connettori ingressi

Il connettore a 16 canali è una morsettiera rimovibile (serie DFMC e FMC della Phoenix).

PIN	Segnale	Descrizione	Simbolo
1, 4, 7, 10, 13, 16, 19, 22	VCC (+)	Alimentazione 24 Vdc per l'esterno	+ 13 1 + 2 IN1
2, 5, 8, 11, 14, 17, 20, 23	Input n	Ingresso n (max 50 mA per ogni ingresso con alimentazione interna; 125 mA con alimentazione esterna)	- 15 + 16 IN6 17 - 18 + 19 IN7 20 - 21 + 22 - 3 - 4 + 5 IN2 - 6 - 7 + 8 IN3 - 9 - 10 +
3, 6, 9, 12, 15, 18, 21, 24	GND (-)	Riferimento di massa	IN8 23 - 24 11 IN4 12 -



Piedinatura connettore alimentazione esterna

PIN	Segnale	Descrizione	Simbolo	
1	+	Ingresso tensione di alimentazione 24 Vdc	+ -	
2	-	Riferimento di massa		

Modalità di connessione

I cavi devono avere la sezione di 0,5 mmq e per rimuovere la morsettiera dal modulo è possibile utilizzare un cacciavite 0,4x2 come da datasheet.

6.2.5 Diagnostica modulo

Led di diagnostica generale

Il LED di segnalazione del primo canale ha la duplice funzione di indicare la diagnostica generale del modulo, oltre che lo stato di attivazione del canale stesso. Per quanto riguarda la diagnostica generale del modulo ingressi digitali, il LED del primo canale si comporta come nella seguente tabella.

Stato modulo ed allarmi	Stato del LED	Descrizione dello stato e soluzioni degli allarmi
Accensione Fine mappatura Fine configurazione	ROSSO OFF	Il modulo entra in questo stato all'accensione e al termine della fase di mappatura o di ricezione dei parametri di configurazione.
Modulo mappato	ROSSO ON	Il led viene acceso durante la fase di mappatura e viene spento se questa procedura termina corret- tamente.
Attesa dei parametri di configurazione	1 lampeggio ROSSO @100 ms ogni 2 s	Il modulo è in attesa dei parametri di configura- zione (durata massima 1 minuto).
Errore di comunicazione	2 lampeggi ROSSO @100 ms ogni 2 s	L'allarme indica che la comunicazione tra il modulo di ingressi digitali e il modulo CX4 è assente. Soluzione : provare a riavviare l'intera isola e verificare che la connessione fisica del modulo di ingressi digitali sia corretta. Se il problema persiste, contattare l'assistenza e sostituire il modulo di ingressi digitali.
Corto circuito ingressi digitali	ROSSO ON	Almeno uno degli ingressi digitali è in corto circuito. Soluzione : rimuovere il sensore in ingresso e controllare il collegamento. Se il problema persiste, sostituire il sensore.

Led stato ingressi

Quando il modulo si trova in modalità di funzionamento normale (a regime e in assenza di particolari criticità), il LED del primo canale si comporta come i LED di segnalazione dei rimanenti canali (dal 2 al 16), ovvero è acceso di colore giallo quando l'ingresso è attivo e spento quando l'ingresso non è attivo.

Stato ingresso	Stato del LED	Descrizione dello stato soluzioni degli allarmi
Ingresso n non attivo	GIALLO OFF	Il led indica che l'ingresso digitale corrispondente non è attivo.
Ingresso n attivato	GIALLO ON	Il LED indica che l'ingresso digitale corrispondente si è attivato correttamente.

Led diagnostica dell'alimentazione esterna

Nella configurazione a 16 canali, il modulo di ingressi digitali è provvisto di un connettore per l'alimentazione esterna con LED di segnalazione dedicato.

N.B. L'alimentazione esterna può essere abilitata o meno attraverso i parametri di configurazione da controllore/PLC o da UVIX.

Stato alimentazione esterna	Stato del LED	Descrizione dello stato e soluzioni degli allarmi
Non configurata	LED OFF	L'alimentazione per gli ingressi digitali è fornita direttamente dal modulo di ingressi digitali.
Alimentazione esterna presente	VERDE ON	L'alimentazione esterna è presente e gli ingressi digitali sono alimentati esternamente. Per que- sta modalità è necessario configurare corretta- mente il parametro per l'utilizzo dell'alimenta- zione esterna.
Alimentazione esterna assente	ROSSO ON	Il modulo è configurato per ricevere l'a- limentazione supplementare esterna ma questa non è rilevata dal modulo. Soluzione : verificare che l'alimentazione arrivi correttamente al modulo e che la connessione sia stata fatta correttamente.
Configurata (Alimentazione esterna fuori range)	1 lampeggio ROSSO @100 ms ogni 1 s	Il modulo è configurato per ricevere alimentazione supplementare esterna ma questa ha un valore <21 Vdc oppure >27 Vdc. Soluzione : variare il valore di alimentazione proveniente dall'esterno e rientrare nel range di funzionamento corretto (21 Vdc ≤ Vcc ≥ 27 Vdc).

6.3 Modulo Uscite Digitali

Il modulo di uscite digitali permette di fornire 8 o 16 segnali digitali all'esterno del sistema. Possono essere collegati attuatori digitali a 2 o 3 fili, tipo P o N.

Il modulo di uscite digitali, dopo essere collegato al modulo CX4, deve essere mappato dall'isola (par. 7.3). Se la procedura di mappatura termina correttamente, il modulo di uscite digitali attende la ricezione dei parametri di configurazione dal modulo CX4 (attesa massima di 1 minuto). Ricevuti tali parametri, il modulo entra in stato di funzionamento normale e le uscite digitali possono essere attivate. In caso contrario, se la procedura di mappatura non termina correttamente, il modulo rimane in stato di errore disattivando qualsiasi funzionalità operativa.

Per ogni ingresso è presente un LED di diagnostica dedicato, mentre per la diagnostica generale viene utilizzato il LED del primo canale (par. 6.3.5).

6.3.1 Funzionalità

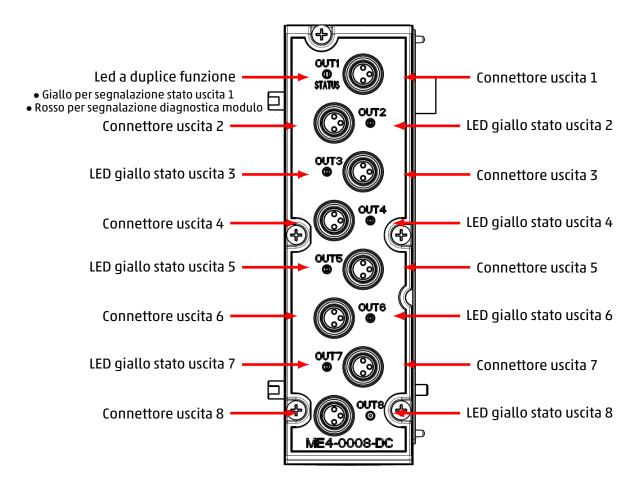
I parametri di configurazione del modulo di uscite digitale possono essere suddivisi in diverse tipologie: modalità di attivazione, gestione della sicurezza con failsafe e generazione di segnali PWM. I parametri per la modalità di attivazione sono costituiti da maschere di bit con diversi significati.

- Settaggi di modulo (*Module settings*): il valore di tale parametro serve ad attivare o disattivare singole funzionalità legate al comportamento dell'intero modulo (non dei singoli canali). Attualmente, viene valorizzato solo il bit meno significativo, che abilita (1) o disabilita (0) il rilevamento dell'assenza di carico da parte del driver di potenza, nel momento in cui un canale viene attivato. Se il rilevamento è attivato e almeno un'uscita viene attivata senza la presenza di un carico, il modulo rileva l'anomalia, che viene poi segnalata mediante uno specifico allarme.
- Abilitazione dei canali (*Enable output channels*): i singoli bit che compongono il valore del parametro descrivono l'abilitazione (1) o la disabilitazione (0) dei singoli canali di uscita. Se durante il funzionamento normale viene attivato un canale non abilitato, il driver di output non fornisce tensione al canale stesso.
- Impostazione del tipo di canale (*Output channels mode*): ogni bit che costituisce il valore del parametro descrive la modalità di attivazione dei singoli canali. Ciascun canale può essere configurato per alimentare carichi di tipo P (1) o di tipo N (0).

I parametri per la gestione della sicurezza sono rappresentati da maschere di bit con significato di volta in volta diverso.

- Abilitazione del failsafe (Fail safe enable): i bit che costituiscono il valore del parametro descrivono l'abilitazione (1) o la disabilitazione (0) del failsafe sul relativo canale. Lo scopo è fare in modo che le uscite assumano un determinato stato qualora si verifichi un allarme di comunicazione: in presenza di tale anomalia, i canali con failsafe abilitato assumeranno il valore prescritto dal parametro riguardante lo stato del fail safe, mentre quelli con failsafe disabilitato manterranno lo stato che avevano nel momento in cui l'allarme di comunicazione si è presentato.
- Stato failsafe (Fail safe status): la maschera di bit che rappresenta il valore di questo parametro descrive lo stato che devono assumere i canali, per i quali il failsafe è abilitato, nel momento in cui si dovesse verificare un allarme di comunicazione. In particolare: 1 indica che il canale corrispondente va attivato, 0 che il canale corrispondente va disattivato.

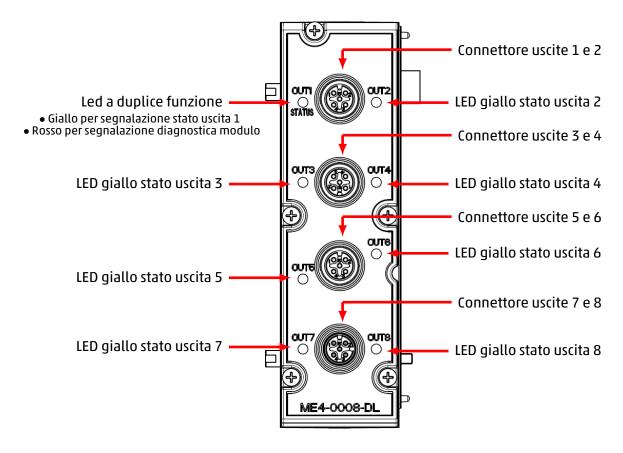
Capitolo 6 Accessori



I parametri che descrivono il funzionamento del modulo di uscita come generatore di segnali PWM.

- Impostazione tipo di canale PWM (*Pwm channels*): il valore di questo parametro rappresenta una maschera di bit che indica la modalità di funzionamento dei singoli canali. In particolare: 1 indica che il relativo canale deve generare un segnale PWM quando attivato, 0 indica che il canale deve invece funzionare in modalità ON/OFF e quindi se attivato, dovrà generare un segnale continuo.
- Tempo di attivazione PWM (Pwm activation time): indica il tempo di attivazione per i canali configurati come PWM, in millisecondi (da 0 a 255). In particolare, nel momento in cui un canale PWM viene attivato, assume immediatamente duty cycle pari al 100% e lo mantiene fino allo scadere del tempo indicato: da quel momento in poi, il segnale PWM verrà modulato con un duty cycle pari al valore del parametro riguardante il duty cycle del canale. Il parametro ha effetto su tutti i canali del modulo.
- Duty cycle per canale (*Pwm channels duty cycle*): il valore di questo parametro descrive il duty cycle da applicare ai singoli canali PWM quando vengono attivati, allo scadere del tempo di attivazione. È espresso in percentuale (da 0 a 100) e viene associato al singolo canale.

6.3.2 Collegamenti e segnalazioni del modulo a 8 uscite di tipo M8

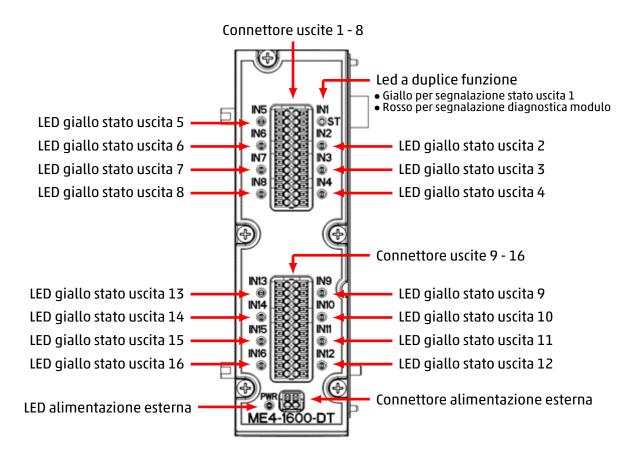

Piedinatura connettori M8

PIN	Seganle	Descrizione	Simbolo
1	VCC	Alimentazione 24 Vdc per l'esterno	4
3	GND	Riferimento di massa	(3) (0 0) (1)
4	Output	Uscita (max 125 mA per ogni uscita)	

N.B. Per i moduli uscite digitali è disponibile a catalogo Camozzi il connettore M8 a cablare 3 poli maschio (cod. CS-DM03HB).

6.3.3 Collegamenti e segnalazioni del modulo a 8 uscite di tipo M12

Piedinatura connettori M12


PIN	Seganle	Descrizione	Simbolo
1	VCC	Alimentazione 24 Vdc per l'esterno	
2	Output n+1	Uscita n+1 (max 125 mA per ogni uscita)	2
3	GND	Riferimento di massa	$ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} $
4	Output n	Uscita n (max 125 mA per ogni uscita)	(S) (4)
5	NC	Non connesso	

N.B. Per i moduli uscite digitali è disponibile a catalogo Camozzi i seguenti connettori.

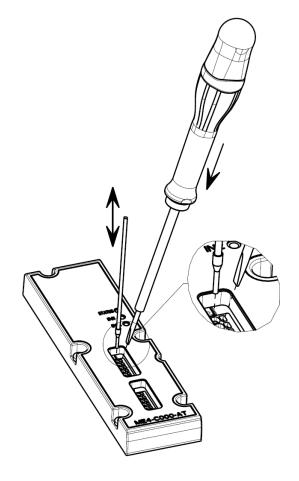
- A cablare metallico, diritto, M12 A 5 poli maschio (cod. CS-LM05HC).
- A cablare, diritto, M12 A 5 poli maschio DUO (cod. CS-LD05HF).

6.3.4 Collegamenti e segnalazioni del modulo a 16 uscite

Piedinatura connettori uscite

Il connettore a 16 canali è una morsettiera rimovibile (serie DFMC e FMC della Phoenix).

PIN	Segnale	Descrizione	Simbolo
1, 4, 7, 10, 13, 16, 19, 22	VCC (+)	Alimentazione 24 Vdc per l'esterno	0UT5 14 2 0UT1 3 -
2, 5, 8, 11, 14, 17, 20, 23	Output n	Uscita n (max 125 mA per ogni uscita)	+ 16
3, 6, 9, 12, 15, 18, 21, 24	GND (-)	Riferimento di massa	+ 22 OUT8 23 - 24 10 10 + 11 OUT4 12 -


Piedinatura connettore alimentazione esterna

PIN	Segnale	Descrizione	Simbolo	
1	+	Ingresso tensione di alimentazione 12÷32 Vdc	+ -	
2	-	Riferimento di massa		

N.B. Il modulo di uscite digitali a 16 canali deve essere obbligatoriamente alimentato dall'esterno.

Modalità di connessione

I cavi devono avere la sezione di 0,5 mmq e per rimuovere la morsettiera dal modulo è possibile utilizzare un cacciavite 0,4x2 come da datasheet.

6.3.5 Diagnostica modulo

Led di diagnostica generale

Il LED di segnalazione del primo canale ha la duplice funzione di indicare la diagnostica del modulo, oltre che lo stato di attivazione del canale stesso. Per quanto riguarda la diagnostica generale del modulo uscite digitali, il LED del primo canale si comporta come nella seguente tabella.

Stato ingresso	Stato del LED	Descrizione dello stato soluzioni degli allarmi
Accensione Fine mappatura Fine configurazione	ROSSO OFF	Il modulo entra in questo stato all'accensione e al termine della fase di mappatura o di ricezione dei parametri di configurazione.
Modulo mappato	ROSSO ON	Il led viene acceso durante la fase di mappatura e viene spento se questa procedura termina corret- tamente.
Attesa dei parametri di configurazione 1 lampeggio F @100 ms ogi		Il modulo è in attesa dei parametri di configura- zione (durata massima 1 minuto).
Corto circuito su un canale di uscita	ROSSO ON	Almeno una delle uscite digitali è in corto circuito. Soluzione : controllare il collegamento ed eventualmente rimuovere il carico in uscita e sostituirlo.
Circuito aperto su un canale di uscita	3 lampeggi ROSSO @100 ms ogni 2 s	Ad almeno un'uscita non è collegato il carico e viene rilevato il circuito aperto. Soluzione : ricontrollare il collegamento del carico con il connettore d'uscita.

Stato ingresso	Stato del LED	Descrizione dello stato soluzioni degli allarmi
Sottotensione di alimentazione (Solo per moduli a 16 canali)	4 lampeggi ROSSO @100 ms ogni 2 s	La tensione di alimentazione è inferiore a 4.5 V. Soluzione : variare il valore di alimentazione e rientrare nel range di funzionamento corretto (Vcc = 24 V). (durata massima 1 minuto).
Mancanza di tensione di alimentazione esterna (Solo per moduli a 16 canali)	4 lampeggi ROSSO @100 ms ogni 2 s	L'alimentazione del circui- to è assente oppure in corto. Soluzione : verificare che l'alimentazione arrivi correttamente al modulo e che la connessione sia stata fatta correttamente.
Errore comunicazione	2 lampeggi ROSSO @100 ms ogni 2 s	Nessuna risposta da parte del CX4 alla segnalazione di stato uscite e diagnostica. Soluzione : contattare l'assistenza e sostituire la cover del modulo di uscite digitali.

Led stato uscite

Quando il modulo si trova in modalità di funzionamento normale (a regime e in assenza di particolari criticità), tale LED si comporta come i LED di segnalazione dei rimanenti canali (dal 2 al 16), ovvero è acceso di colore giallo quando l'uscita è attiva e spento quando l'uscita non è attiva.

Stato ingresso	Stato del LED	Descrizione dello stato soluzioni degli allarmi
Uscita n non attiva	GIALLO OFF	Il led indica che l'ingresso digitale corrispondente non è attivo.
Uscita n attivata	GIALLO ON	Il LED indica che l'ingresso digitale corrispondente si è attivato correttamente.

led di diagnostica dell'alimentazione esterna

Nella configurazione a 16 canali, il modulo di uscite digitali è provvisto di un connettore per l'alimentazione esterna con LED di segnalazione dedicato.

N.B. L'alimentazione esterna è da collegare obbligatoriamente.

Stato ingresso	Stato del LED	Descrizione dello stato soluzioni degli allarmi
Alimentazione esterna presente	VERDE OFF	L'alimentazione esterna è presente ed il modulo di uscite può funzionare correttamente.
Alimentazione esterna assente	VERDE OFF	Il modulo non rileva l'alimentazione esterna. Soluzione : verificare che l'alimentazione arrivi correttamente al modulo. Se il problema persiste, contattare l'assistenza e sostituire il modulo.

6.4 Modulo Ingressi Analogici

Il modulo di ingressi analogici può monitorare due sensori analogici contemporaneamente. Le tipologie di sensori collegabili sono:

- Termoresistenze (RTD) per la misura della temperatura.
- Termocoppie per la misura della temperatura.
- Bridge per la misura di resistenza.
- Sensori generici con uscite in tensione o in corrente.

Il modulo di ingressi analogici, dopo essere collegato al modulo CX4, deve essere mappato dall'isola (par. 7.3). Se la procedura di mappatura termina correttamente, il modulo attende la ricezione dei parametri di configurazione dal modulo CX4. Ricevuti tali parametri, il modulo entra in stato di funzionamento normale e gli ingressi analogici possono essere letti. In caso contrario, se la procedura di mappatura non termina correttamente, il modulo rimane in stato di errore disattivando qualsiasi funzionalità operativa.

6.4.1 Formato dati

Ogni canale restituisce la conversione dell'ingresso corrispondente in una word a 16 bit o a 32 bit. Il dato è rappresentato in complemento a 2 e corrisponde, a seconda del modulo, a diverse grandezze.

Modulo	Word trasmessa	Formato dati	Grandezza
RTD	16 bit	16 bit complemento a 2	°C/10
TERMOCOPPIE	16 bit	16 bit complemento a 2	°C/10
BRIDGE	32 bit	24 bit complemento a 2	uV
TENSIONE/CORRENTE	16 bit	16 bit complemento a 2 16 bit RAW (6.4.8)	mV, uA RAW

Ad ogni canale è, inoltre, associato un byte di diagnostica che riporta gli errori indicati nella diagnostica. Nel caso di funzionamento corretto, il byte di diagnostica è pari a 0. In caso contrario è possibile analizzare l'errore facendo riferimento al paragrafo relativo al bus di campo.

Nel caso il byte di diagnostica sia diverso da 0 il modulo bridge invierà un dato pari a 0x7FFFFF mentre tutti gli altri trasmetteranno il valore 0x7FFF (**N.B.** Questo non viene applicato in caso di formato dati *RAW*).

Il formato dati utilizzato dal CX4 per la comunicazione con il PLC è di tipo *little endian* per il protocollo EtherCAT.

Esempio

Nel formato little endian viene inviato trasmesso il byte meno significativo (LSB) per primo. Ad esempio, il valore 100000 uV (0x186A0) ricevuto da un modulo BRIDGE, verrà inviato nel seguente modo:

	LSB	MID	MSB
Indirizzo	0x00	0x01	0x02
Dato	0xA0	0x86	0x01

6.4.2 Funzionalità

I parametri configurabili per il modulo di ingressi analogici sono la tipologia di ingressi, i parametri di trasmissione e i filtri da applicare agli ingressi.

Configurazione ingressi

A seconda del tipo di modulo utilizzato, ciascun ingresso deve essere opportunamente configurato. Ad esempio, nel caso di un modulo RTD, potremmo decidere di avere la seguente configurazione:

Canale 1: PT100 a 4 fili
 Canale 2: PT1000 a 2 fili

Oppure, per un modulo Termocoppie, si potrebbe richiedere la configurazione:

• Canale 1: termocoppia di tipo K

Canale 2: disabilitato

Per la descrizione dettagliata della configurazione dei diversi ingressi analogici, fare riferimento ai paragrafi successivi.

Configurazione parametri di trasmissione

I moduli possono trasmettere i dati verso la testa secondo due diverse modalità: in frequenza ed a soglia.

Quando la trasmissione è configurata in frequenza (parametri Sampling Threshold e Sampling Threshold Timeout disabilitati), è possibile impostare una frequenza di trasmissione (Sampling Frequency) con la quale il modulo trasmette i dati acquisiti, periodicamente, verso il modulo CX4. **N.B.** Questo parametro non è la frequenza di campionamento degli ingressi del modulo, la quale è fissa. Per conoscere la frequenza di campionamento fare riferimento alle tabelle dei dati tecnici presenti nel capitolo accessori 6.4).

Quando la trasmissione è configurata a soglia (parametro Sampling Threshold diverso da zero), il modulo trasmette i dati alla testa solamente se il valore attuale è superiore rispetto al precedente del valore impostato come soglia. Se l'ingresso non subisce variazioni oltre la soglia, il modulo trasmette ugualmente il dato allo scadere del timeout (Sampling Threshold Timeout). In questa configurazione, il parametro Sampling Frequency può essere utilizzato per imporre un limite alla frequenza di variazione del segnale rispetto alla soglia. In questo modo è possibile ridurre l'occupazione del bus condiviso da parte dei moduli.

Esempio

Consideriamo un modulo RTD con entrambi i canali abilitati e con la seguente configurazione di trasmissione:

- Sampling Frequency: 5 Hz
- Sampling Threshold: disabilitato
- Sampling Threshold Timeout: disabilitato

il modulo invia al PLC ogni 200 millisecondi i dati acquisiti dagli ingressi e la relativa diagnostica.

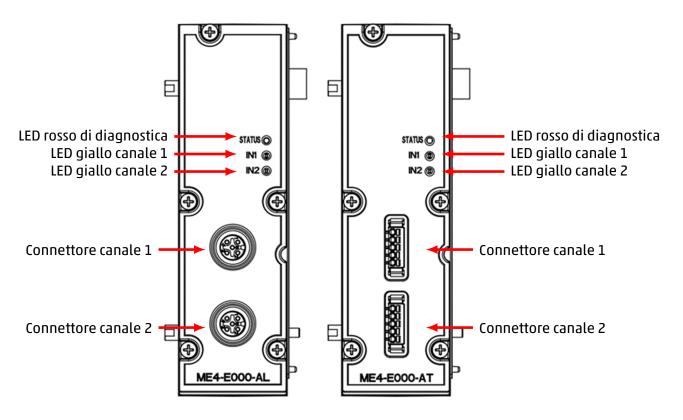
Se la configurazione fosse invece:

- Sampling Frequency: 1 Hz
- Sampling Threshold: 0.2 °C
- Sampling Threshold Timeout: 5 secondi

Il modulo trasmette al PLC i dati acquisiti dagli ingressi e la relativa diagnostica nei seguenti casi:

- Se la misura di temperatura all'istante attuale di uno dei due ingressi supera la precedente di almeno 0.2 °C.
- Se non vi sono variazioni di temperatura oltre la soglia per più di 5 secondi.

Nel primo caso, se la frequenza di variazione della temperatura rispetto alla soglia fosse superiore a 1 Hz, la trasmissione verrebbe limitata ad 1 Hz.


Configurazione filtri

Ogni ingresso è provvisto di un filtro digitale a media mobile (FIR). La lunghezza massima della risposta all'impulso del filtro è di 128 campioni. Nella configurazione di default i filtri sono disabilitati.

6.4.3 Collegamenti e segnalazioni dei moduli

I moduli analogici possono avere due tipologie di connettori per i collegamenti con i sensori. Nella figura seguente, a sinistra è mostrato un modulo analogico con connettori femmina M12 A codec 5 poli, mentre a destra un modulo analogico con connettori TB femmina a 5 poli.

N.B. Le diverse tipologie di moduli di ingressi analogici hanno piedinature specifiche e dedicate alle loro funzionalità. La segnalazione visiva del funzionamento e della diagnostica avviene mediante tre LED.

6.4.4 Diagnostica modulo

N.B. Per la descrizione dettagliata delle anomalie sensori fare riferimento ai paragrafi specifici di ogni modulo (RTD, termocoppie, bridge e moduli V/C).

Stato modulo ed allarmi	LED STATUS	LED IN1	LED IN2	Descrizione dello stato e soluzioni degli allarmi
Attesa dei parametri di configurazione	1 lampeggio ROSSO @100 ms ogni 2 s	GIALLO OFF	GIALLO OFF	Il modulo è in attesa dei parametri di configurazione (durata massima 1 minuto).
Sensore funzionante sul canale 1	ROSSO OFF	GIALLO ON	GIALLO OFF	Il sensore collegato al canale 1 è correttamente funzionante.
Sensore funzionante sul canale 2	ROSSO OFF	GIALLO OFF	GIALLO ON	Il sensore collegato al canale 2 è correttamente funzionante.
Anomalia sensore sul canale 1	2 lampeggi ROSSO @100 ms ogni 2 s	2 lampeggi GIALLO @100 ms ogni 2 s	GIALLO OFF	Anomalia del sensore abilitato e collegato sul canale 1. Soluzione: verificare la corretta connessione del sensore e l'eventuale sua alimentazione.

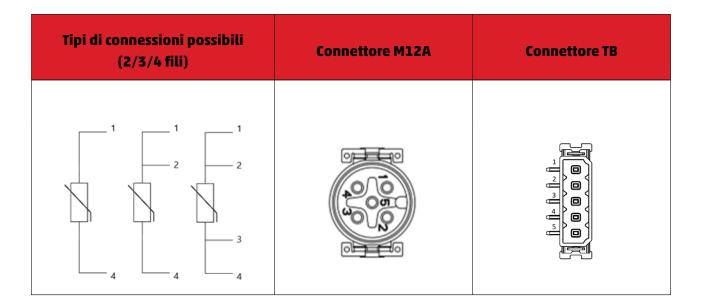
Stato modulo ed allarmi	LED STATUS	LED IN1	LED IN2	Descrizione dello stato e soluzioni degli allarmi
Sensore bridge mancante al canale 1 (Allarme bloccante solo per il modulo di tipo bridge)	3 lampeggi ROSSO @100 ms ogni 2 s	3 lampeggi GIALLO @100 ms ogni 2 s	GIALLO OFF	Sensore bridge mancante o guasto al momento della configurazione del modulo sul canale 1. Soluzione: verificare connessioni sensore e riavviare il modulo.
Anomalia sensore sul canale 2	2 lampeggi ROSSO @100 ms ogni 2 s	GIALLO OFF	2 lampeggi GIALLO @100 ms ogni 2 s	Anomalia del sensore abilitato e collegato sul canale 2. Soluzione: verificare la corretta connessione del sensore e l'eventuale sua alimentazione.
Sensore bridge mancante al canale 2 (Allarme bloccante solo per i moduli di tipo bridge)	3 lampeggi ROSSO @100 ms ogni 2 s	GIALLO OFF	3 lampeggi GIALLO @100 ms ogni 2 s	Sensore bridge mancante o guasto al momento della configurazione del modulo sul canale 2. Soluzione: verificare connessioni sensore e riavviare il modulo.

Stato modulo ed allarmi	LED STATUS	LED IN1	LED IN2	Descrizione dello stato e soluzioni degli allarmi
Errore di comunicazione dell'ADC	4 lampeggi ROSSO @100 ms ogni 2 s	GIALLO OFF	GIALLO OFF	Si verifica in caso di problemi di comunicazione interna con l'ADC che misura la grandezza fisica in ingresso. Soluzione: contattare l'assistenza e sostituire il modulo.
Errore tensione di logica 3.3 V	ROSSO ON	GIALLO OFF	GIALLO OFF	Si verifica in caso di problemi con la tensione di logica (3.3 V). Soluzione: contattare l'assistenza e sostituire il modulo.

6.4.5 Modulo RTD (Resistance Temperature Detector)

A questi moduli analogici possono essere collegati delle termoresistenze (RTD) per la misura della temperatura. È possibile configurare alcuni parametri singolarmente per effettuare le misure.

Dati tecnici


Caratteristica			Valore	
			Temper	atura [°C]
		Tipologia	Minima	Massima
		PT100 (385)	-200	850
		PT100 (3926)	-200	630
		PT200 (385)	-200	850
Tipologia sensori		PT500 (385)	-200	850
		PT1000 (385)	-200	850
		Ni100 (618)	-60	180
		Ni120 (672)	-80	260
		Ni1000 (618)	-60	250
Tipologie di connessioni		ā	2/3/4 fili	
Numero ingressi	2			
Collegamento sensori	Connettori femmina M12 A codec 5 poli per ogni ingress Connettori TB femmina a 5 poli per ogni ingresso			
Risoluzione convertitore	16 bit			
Risoluzione lettura			0.1 °C	
Errore di misura			< ±1 °C	
Frequenza di campionamento		4 Hz pe	r ogni ingr	esso
Filtro digitale	Filtro a media mobile per ogni ingresso (configurabile fino a 128 campioni)			
Segnalazione e diagnostica		Led rosso di Led giallo	diagnostic per ogni ir	

Collegamenti elettrici

Lo schema di connessione per RTD è differente in funzione del numero di fili utilizzato:

- RTD a 2 fili devono essere collegate tra il pin 1 ed il pin 4 del connettore.
- RTD a 3 fili devono essere collegate tra il pin 2 ed il pin 4 del connettore, il filo di compensazione al pin 1.
- RTD a 4 fili devono essere collegate tra il pin 2 ed il pin 3 del connettore, i fili di compensazione ai pin 1 e 4.

Anomalie

Il modulo è in grado di rilevare le seguenti anomalie:

- Disconnessione o rottura del sensore RTD.
- Superamento del range di temperatura del sensore oltre ±1°C.

N.B. Il rilevamento della disconnessione dei fili di compensazione (ingresso A4- per RTD a 3 fili, ingressi A1+ e/o A4+ per RTD a 4 fili) può richiedere diversi secondi.

6.4.6 Modulo Termocoppie

A questi moduli analogici possono essere collegati delle termocoppie per la misura della temperatura. È possibile configurare alcuni parametri singolarmente per effettuare le misure.

Dati tecnici

Caratteristica			Valore		
			Temper	Temperatura [°C]	
		Tipologia	Minima	Massima	
		В	250	1820	
		E	-200	1000	
		J	-210	1200	
Tipologia sensori		K	-200	1372	
		N	-200	1300	
		R	-50	1768.1	
		S	-50	1768.1	
		T	-200	400	
Numero ingressi			2		
Collegamento sensori	Connettori femmina M12 A codec 5 poli per ogni ingress Connettori TB femmina a 5 poli per ogni ingresso				
Risoluzione convertitore			16 bit		
Risoluzione lettura			0.1 °C		
Errore di misura		< ±2°C per t < ±4°C pe	ermocoppi r termocop		
requenza di campionamento		4 Hz p	per ogni ing	gresso	
Filtro digitale	Filtro a media mobile per ogni ingresso (configurabile fino a 128 campioni)				
Segnalazione e diagnostica			di diagnost o per ogni	tica scheda ingresso	

Collegamenti elettrici

La termocoppia deve essere connessa ai pin 2 (positivo) e 4 (negativo) del connettore M12 o TB. Tra i pin 1 e 3 è presente, sul circuito, una RTD (PT100) necessaria per effettuare, in modo del tutto automatico, la CJC (Cold Junction Compensation).

Pin	Segnale	Descrizione	Connettore M12A	Connettore TB
1	CJC	PT100 per cold junction compensation (non connettere)	01 10	
2	TC+	Ingresso positivo termocoppia	,oni	
3	CJC	PT100 per cold junction compensation (non connettere)		
4	TC-	Ingresso negativo termocoppia		
5	GND	Massa		

Anomalie

Il modulo è in grado di rilevare le seguenti anomalie:

- Disconnessione o rottura del sensore termocoppia.
- Superamento del range di temperatura del sensore oltre ±2°C.

N.B. il rilevamento della disconnessione del sensore termocoppia può richiedere diversi secondi.

6.4.7 Modulo Bridge

I moduli Bridge si basano sul funzionamento a ponte resistivo a sensitività variabile (es. Celle di carico).

Dati tecnici

Caratteristica	Valore
Tipologia sensori	Sono supportati resistor bridge (es: celle di carico) a 4 fili con fattore bridge (sensitività) variabile: da 2 mV/V a 255 mV/V ad intervalli di 1 mV/V
Numero ingressi	2
Collegamento sensori	Connettori femmina M12 A codec 5 poli per ogni ingresso Connettori TB femmina a 5 poli per ogni ingresso
Risoluzione convertitore	24 bit
Risoluzione lettura	1 uV
Errore di misura	Dipende dal fattore di bridge
Frequenza di campionamento	1 KHz per ogni ingresso
Tensione di eccitazione del ponte	5 V
Filtro digitale	Filtro a media mobile per ogni ingresso (configurabile fino a 128 campioni)
Segnalazione e diagnostica	Led rosso di diagnostica scheda Led giallo per ogni ingresso

Collegamenti elettrici

Pin	Segnale	Descrizione	Connettore M12A	Connettore TB
1	ECC1+	Tensione positiva di eccitazione del resistor bridge (+5 V)	01 10	
2	ECC1-	Tensione negativa di eccitazione del resistor bridge (0 V)	4000	
3	SRB1+	Segnale differenziale positivo del resistor bridge		
4	SRB1-	Segnale differenziale negativo del resistor bridge		
5	GND	Massa		

Celle di carico

Le celle di carico possono essere collegate al modulo Bridge per misurare una forza applicata su un oggetto tramite la lettura della tensione fatta dal ponte resistivo. La formula di conversione da tensione a peso per celle di carico è la seguente:

$$F = \frac{F_N \cdot U}{C \cdot U_{EXC}}$$

Dove:

- F è la forza rilevata dalla cella di carico (Kg)
- F_N è la capacità della cella di carico (Kg)
- C è la sensitività della cella di carico (mV/V)
- ullet U_{EXC} è la tensione di eccitazione del ponte resistivo, questo valore è fisso e pari a 5V
- U è la tensione letta dalla cella di carico

Esempio

Una cella di carico ha le seguenti caratteristiche: $C = 2 \text{ mV/V} \text{ e } F_N = 5 \text{ Kg.}$ In seguito all'applicazione di una forza sulla cella di carico, il modulo rileva una tensione di 100 uV. Ricavare il valore di peso corrispondente:

$$F = \frac{5Kg \cdot 0.1mV}{2mV/V \cdot 5V} = 0.05Kg$$

Quindi il valore di peso letto corrisponde a 50 grammi.

Errore di misura

Il convertitore AD presente sul modulo integra un PGA (*Programmable Gain Amplifier*) il cui guadagno viene ottimizzato a seconda del fattore di bridge impostato. Tale guadagno determina il fondo scala della misura ed il rumore ad essa correlata. Nella seguente tabella sono riportati gli errori a fondo scala per i fattori bridge più comuni.

Fattore Bridge (mV/V)	Fondoscala (mV)	Errore % (relativo al fondoscala)
< 8	78,1	±0,0243
16	156,3	±0,0128
32	312,5	±0,0067
64	625,0	±0,0062
128	1250,0	±0,0056
256	2500,0	±0,0064

Anomalie

Il modulo è in grado di rilevare le seguenti anomalie:

- Cortocircuito tra pin ECC+ ed ECC- (tensione di eccitazione).
- Resistor bridge scollegato.
- Superamento del valore di fondo scala del resistor bridge (U_{EXC} ·) C dell'1%.

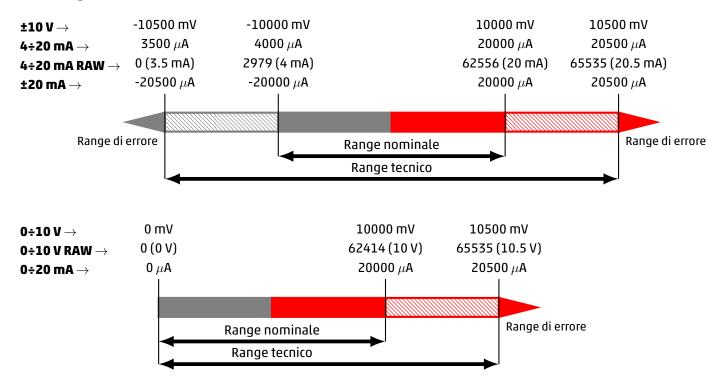
N.B. Il rilevamento della disconnessione del *resistor bridge* può avvenire solo al momento della configurazione del modulo e non mentre si è in modalità operativa. L'errore rimane impostato fino all'inserimento di un *resistor bridge* e ad una successiva riconfigurazione.

6.4.8 Modulo Tensione/Corrente

I moduli tensione/corrente(V/C) sono moduli di ingressi analogici che permettono di misure sia correnti che tensioni analogiche.

Dati tecnici

Caratteristica	Valore	
	Sono supportati i seguenti ingressi in tensione e corrente:	
	0÷10 V	
	0÷10 V RAW	
Tipologia sopsori	±10 V	
Tipologia sensori	4÷20 mA	
	4÷20 mA RAW	
	0÷20 mA	
	±20 mA	
Numero ingressi	2	
	Connettori femmina M12 A codec 5 poli per ogni ingresso	
Collegamento sensori	Connettori TB femmina a 5 poli per ogni ingresso	
Risoluzione convertitore	16 bit	
	1 mV	
Disalusia sa lattura	160.2 μ V RAW	
Risoluzione lettura	1 μ A	
	259.4 nA RAW	
	< ±0.3% (relativo al fondo scala ±10 V)	
Errore di misura	< ±0.3% (relativo al fondo scala 0÷20 mA)	
Frequenza di campionamento	100 Hz per ogni ingresso	
Tensione di eccitazione del ponte	5 V	
Filtro digitale	Filtro a media mobile per ogni ingresso (configurabile fino a 128 campioni)	
Segnalazione e diagnostica	Led rosso di diagnostica scheda Led giallo per ogni ingresso	



Collegamenti elettrici

Pin	Segnale	Descrizione	Connettore M12A	Connettore TB
1	+24EX	Tensione 24 Vdc ausiliaria		
2	IN+	Ingresso differenziale positivo del segnale in tensione o in corrente	\$0.00	
3	GND	Massa	3000	
4	IN-	Ingresso differenziale negativo del segnale in tensione o in corrente	0	
5	GND	Massa		

N.B. Valore massimo di assorbimento sono 200 mA per canale o 400 mA se presente un solo sensore alimentato dalla scheda.

Data range

Formato RAW

Le configurazioni 0÷10 V RAW e 3.5÷20.5 mA RAW restituiscono un valore RAW, ovvero che deve essere convertito per ottenere il corrispondente valore di tensione o corrente. In questo caso il range di misura è mappato linearmente in un valore numerico a 16 bit e considerando il range tecnico.

0÷10 V RAW
$$\to$$
 $V(V)=\frac{10.5V}{65535}\cdot RAW_{VAL}$ 4÷20 mA RAW \to $I(mA)=\frac{17mA}{65535}\cdot RAW_{VAL}+3.5mA$

Anomalie

Il modulo è in grado di rilevare le seguenti anomalie:

- Superamento tensione/corrente minima e massima di ±60 mV o ±120 uA.
- Circuito aperto (se canale configurato in tensione).

N.B. Il rilevamento di circuito aperto (canale configurato in tensione) può richiedere diversi secondi.

6.5 Modulo Uscite Analogiche

Il modulo di uscite analogiche può comandare due uscite indipendenti con le seguenti configurazioni:

- In tensione 0÷10 V
- In tensione 0÷5 V
- In corrente 0÷20 mA
- In corrente 4÷20 mA

Il modulo di uscite analogiche, dopo essere collegato al modulo CX4, deve essere mappato dall'isola (par. 7.3). Se la procedura di mappatura termina correttamente, il modulo attende la ricezione dei parametri di configurazione dal modulo CX4. Ricevuti tali parametri, il modulo entra in stato di funzionamento normale e le uscite, se abilitate, possono essere settate. In caso contrario, se la procedura di mappatura non termina correttamente, il modulo rimane in stato di errore disattivando qualsiasi funzionalità operativa.

Dati tecnici

Caratteristica	Valore
Tipologia uscita	0÷10 V 0÷5 V 0÷20 mA 4÷20 mA
Numero uscite	2
Collegamento sensori	Connettori femmina M12 A codec 5 poli per ogni uscita Connettori TB femmina a 5 poli per ogni uscita
Risoluzione convertitore	16 bit
Risoluzione lettura	1 mV 1 μA
Errore di misura	
Segnalazione e diagnostica	Led rosso di diagnostica scheda Led giallo per ogni ingresso.

6.5.1 Formato dati

Ogni canale restituisce la conversione dell'ingresso corrispondente in una word a 16 bit.

Modulo	Word trasmessa	Formato dati	Grandezza
TENSIONE/CORRENTE	16 bit	16 bit, complemento a 2	mV, uA

Il formato dati utilizzato dal CX4 per la comunicazione con il PLC è di tipo *little endian* per il protocollo EtherCAT.

Esempio

Nel formato little endian viene inviato trasmesso il byte meno significativo (LSB) per primo. Ad esempio, il valore 5000 mV (0x1388) ricevuto da un modulo V/C, dovrà essere inviato nel seguente modo:

	LSB	MSB
Dato	0x88	0x13

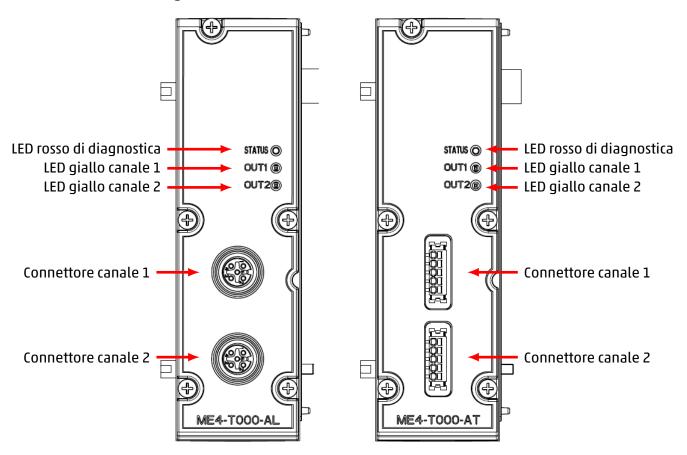
6.5.2 Funzionalità

I parametri configurabili per il modulo di uscite analogiche riguardano la tipologia dei canali e la gestione del failsafe. Ciascuna uscita deve infatti essere opportunamente configurata come canale in tensione o in corrente. In caso di perdita di comunicazione col PLC è inoltre possibile assegnare dei valori di default, sia in tensione sia in corrente, alle uscite analogiche (failsafe). In particolare:

- assegnare il valore che lo stesso aveva prima della caduta di comunicazione (failsafe disabilitato).
- Assegnare un valore desiderato, configurabile nel tool di configurazione master (failsafe abilitato).

Esempio

Considerando un modulo di uscite analogiche con entrambi i canali abilitati in tensione e failsafe abilitato solo sul secondo canale. In tal caso la configurazione parametri risulta essere la seguente:


- Channel Configuration Channel 1: 1 (0÷10 V)
- Channel Configuration Channel 2: 2 (0÷5 V)
- Fail Safe Enable Channel 1: 0
- Fail Safe Enable Channel 2: 1
- Fail Safe Value Channel 1: 0
- Fail Safe Value Channel 2: 3500

In caso di perdita di comunicazione col PLC, il valore del canale 1 è uguale all'ultimo dato ricevuto dal PLC prima della caduta, mentre sul canale 2 viene impostato il valore di 3500 mV come conseguenza dell'abilitazione del failsafe e dell'impostazione del valore di failsafe.

6.5.3 Collegamenti e segnalazioni dei moduli

I moduli analogici possono avere due tipologie di connettori per i collegamenti elettrici. Nella figura seguente, a sinistra è mostrato un modulo analogico con connettori femmina M12 A codec 5 poli, mentre a destra un modulo analogico con connettori TB femmina a 5 poli. La segnalazione visiva del funzionamento e della diagnostica avviene mediante tre LED.

Collegamenti elettrici

Pin	Segnale	Descrizione	Connettore M12A	Connettore TB
1	+24EX	Tensione 24 Vdc ausiliaria		
2	ОИТ	Uscita del segnale in tensione o in corrente		
3	GND	Riferimento di massa	(30,00	
4	NC	Non connesso		
5	NC	Non connesso		

N.B. Valore massimo di assorbimento sono 200 mA per canale o 400 mA se presente un solo sensore alimentato dalla scheda.

6.5.4 Diagnostica modulo

Stato modulo ed allarmi	LED STATUS	LED IN1	LED IN2	Descrizione dello stato e soluzioni degli allarmi
Attesa dei parametri di configurazione	1 lampeggio ROSSO @100 ms ogni 2 s	GIALLO OFF	GIALLO OFF	Il modulo è in attesa dei parametri di configurazione (durata massima 1 minuto).
Uscita funzionante (Canale 1)	ROSSO OFF	GIALLO ON	GIALLO OFF	L'uscita del canale 1 è correttamente funzionante.
Uscita funzionante (Canale 2)	ROSSO OFF	GIALLO OFF	GIALLO ON	L'uscita canale 2 è correttamente funzionante.
Anomalia comunicazione	2 lampeggi ROSSO @100 ms ogni 2 s	2 lampeggi GIALLO @100 ms ogni 2 s	2 lampeggi GIALLO @100 ms ogni 2 s	Anomalia comunicazione tra testa e modulo. Soluzione : contattare l'assistenza per sostituzione modulo.

Stato modulo ed allarmi	LED STATUS	LED IN1	LED IN2	Descrizione dello stato e soluzioni degli allarmi
Assenza di carico (Canale 1)	3 lampeggi ROSSO @100 ms ogni 2 s	3 lampeggi GIALLO @100 ms ogni 2 s	GIALLO OFF	Carico sull'uscita non presente (Questo allarme è valido solamente per la configurazione in corrente). Soluzione: verificare connessioni con il carico e riavviare il modulo.
Assenza di carico (Canale 2)	3 lampeggi ROSSO @100 ms ogni 2 s	GIALLO OFF	3 lampeggi GIALLO @100 ms ogni 2 s	Carico sull'uscita non presente (Questo allarme è valido solamente per la configurazione in corrente). Soluzione: verificare connessioni con il carico e riavviare il modulo.
Allarme di modulo	4 lampeggi ROSSO @100 ms ogni 2 s	4 lampeggi GIALLO @100 ms ogni 2 s	4 lampeggi GIALLO @100 ms ogni 2 s	Si verifica in caso dei seguenti problemi: • Sovratemperatura • Sottotensione di alimentazione • Errore interno DAC Soluzione: contattare l'assistenza e sostituire il modulo.

Messa in servizio

7.1 Collegamenti elettrici

Si raccomanda di eseguire i seguenti passi per il corretto collegamento elettrico del sistema:

- Collegare il connettore IN alla rete EtherCAT proveniente dal controllore/PLC.
- Collegare il connettore OUT al dispositivo successivo sulla rete EtherCAT. Se questo connettore non è utilizzato, chiudere con il tappo apposito per garantire la protezione IP65.
- Collegare il connettore di alimentazione elettrica.

N.B. A catalogo Camozzi è possibile trovare i tappi dedicati per la protezione IP65 dei nostri connettori (per moduli ingressi/uscite digitali e analogici e sottorete):

- CS-DFTP, tappo copri connettori M8.
- CS-LFTP, tappo copri connettori M12.

7.2 Funzionamento all'avvio

Il modulo CX4 all'avvio effettua il controllo della composizione dell'intero sistema, questa chiamata *mappatura*. Nello specifico, la composizione del sistema è determinata dalla tipologia e dalla posizione delle sottobasi per elettrovalvole e dei moduli I/O collegati. La mappatura del sistema è salvata nella memoria interna al modulo CX4. Se la mappatura non è mai stata memorizzata oppure è stata modificata la composizione del sistema, deve essere effettuata una richiesta di nuova mappatura (par. 7.3). Durante l'operazione di mappatura, i led di diagnostica generale di ogni singolo dispositivo accessorio collegato si accendono in sequenza, prima lato elettrovalvole e poi lato moduli I/O.

- Se la mappatura termina correttamente, il CX4 passa alla fase successiva. Inoltre, i led diagnostici di ogni singolo modulo riconosciuto vengono spenti.
- Se la mappatura non termina correttamente, viene segnalato un allarme di diagnostica (par. 8.1.2)
 e il modulo CX4 non prosegue con nessun'altra operazione.

La seconda fase all'avvio del sistema è la configurazione dei parametri. Il CX4 rimane in attesa, al massimo 1 minuto, dei parametri provenienti dal controllore/PLC, altrimenti vengono caricati quelli salvati in memoria interna oppure i parametri di default. Durante la fase di attesa dei parametri di configurazione, i led dei moduli I/O lampeggiano fino al termine di quest'operazione (Il tipo di lampeggio è definito per ogni singolo modulo accessorio nel capitolo 6).

Al termine di questa seconda fase all'avvio, il sistema, gestito dal modulo CX4, si porta in modalità di funzionamento normale ed è pronto ad eseguire le operazioni richieste.

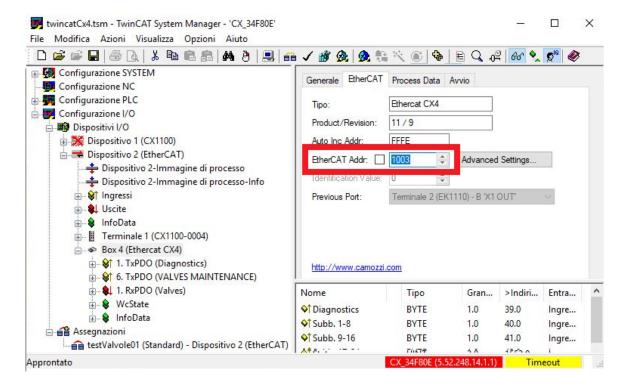
7.3 Mappatura

Il modulo CX4, in configurazione moduli seriali Serie CX4 o isola di valvole Serie D Fieldbus, è estremamente flessibile e può essere modificata la sua configurazione rimuovendo, sostituendo o modificando le posizioni delle sottobasi per elettrovalvole e/o i moduli I/O. Ad ogni modifica apportata, deve essere fatta la procedura di mappatura per il riconoscimento della composizione del sistema. Il modulo CX4 deve essere a conoscenza della composizione dell'intera isola: numero, tipologia e posizione di sottobasi per elettrovalvole e di moduli I/O.

L'operazione di mappatura può essere fatta senza dover intervenire in maniera fisica sull'isola ma in maniera software inviando una richiesta di nuova mappatura. La richiesta di nuova mappatura può essere fatta nelle seguenti modalità:

- Camozzi UVIX in modalità Gateway-USB (par. 9.8).
- NFCamApp, app smartphone (par. 10.6).

N.B. Una volta effettuata la richiesta di mappatura è necessario riavviare il modulo CX4.


7.4 Indirizzamento EtherCAT

Il CX4 rileva la posizione fisica del modulo all'interno della rete EtherCAT ed assegna automaticamente l'indirizzo. Questo indirizzo viene perso allo spegnimento del modulo. Alla riaccensione, se la posizione fisica non è cambiata, il CX4 provvede a riassegnare l'indirizzo precedente. L'indirizzo può essere assegnato anche tramite alcuni tool di configurazione. Con questa procedura l'indirizzo è memorizzato in maniera permanete nella EEPROM e viene mantenuto anche allo spegnimento del modulo. Per leggere/modificare le informazioni dell'indirizzo esistono diverse possibilità:

- Camozzi UVIX, interfaccia browser (par. 9.2.2)
- NFCamApp, app smartphone (par. 10.5).
- TwinCAT@ utilizzando la funzione Configured Station Alias.

N.B. Se la comunicazione EtherCAT tra il CX4 e il controllore/PLC non si stabilisce, il problema viene segnalato dai LED di diagnostica del bus.

7.5 Configurazione tramite file ESI

Per configurare l'isola di valvole sulla rete EtherCAT è necessario importare il file ESI nel software di programmazione utilizzato per il controller. Il file di configurazione descrive le caratteristiche dell'isola di valvole EtherCAT e permette di configurare correttamente gli Input/Output.

Il file ESI è reperibile sul sito Camozzi al seguente indirizzo:

http://catalogue.camozzi.com/Downloads

7.6 Occupazione degli indirizzi

Il volume di indirizzi dell'isola di valvole Serie D nella rete EtherCAT è limitato come da tabella.

Moduli	Numero di canali	Byte per singolo modulo	Numero di moduli collegabili	Volume indirizzi occupato	Massimo numero di I/O
Sottobasi elettrovalvole	2	2 bit per valvola	64	16 byte	128 elettropiloti
Moduli ingressi digitali a 8 canali	8	1 byte	16	16 byte	128 ingressi digitali
Moduli ingressi digitali a 16 canali	16	2 byte	8	16 byte	128 ingressi digitali
Moduli uscite digitali a 8 canali	8	1 byte	16	16 byte	128 uscite digitali
Moduli uscite digitali a 16 canali	16	2 byte	8	16 byte	128 uscite digitali
Moduli ingressi analogici per RTD	2	4 byte	8	32 byte	16 ingressi analogici per RTD
Moduli ingressi analogici per Termocoppie	2	4 byte	8	32 byte	16 ingressi analogici per Termocoppie
Moduli ingressi analogici per BRIDGE	2	8 byte	4	32 byte	8 ingressi analogici per BRIDGE
Moduli ingressi analogici per Tensione/Corrente	2	4 byte	8	32 byte	16 ingressi analogici per Tensione/Corrente
Moduli uscite analogiche per Tensione/Corrente	2	4 byte	8	32 byte	16 uscite analogiche per Tensione/Corrente

7.7 Dati ciclici

I dati scambiati in modalità ciclica tra il modulo CX4 e il controllore/PLC rappresentano gli stream di input e output della comunicazione real time, composti dai rispettivi PDO nei due sensi di comunicazione: TxPDO (input) e RxPDO (output).

Il primo byte dello stream di input è sempre presente ed è il byte di diagnostica di funzionamento generale dell'isola, si veda al proposito il capitolo sull'identificazione guasti (par. 8.1.2). A seguire, se impostati nel tool master di configurazione, i PDO dei moduli Digital Input o Analog Input.

Per lo stream di output non ci sono PDO obbligatori; nel configuratore è possibile aggiungere RxPDO per elettrovalvole e per i moduli di uscita (e in futuro Analog Output).

La seguente tabella riassume tutti i PDO coinvolti nello scambio dati ciclico, con le relative dimensioni massime. Se necessario dal configuratore è possibile ridurre tali dimensioni, eliminando dal contenuto dei PDO i byte in eccesso rispetto alle effettive esigenze.

Index PDO	Dim. Max (byte)	Nome	Obbligatorio	Contenuto PDO (min)	Contenuto PDO (max)	Direzione			
0x1A00	1	1. TxPDO (Diagn.)	Si	0x3000:01		Input			
0x1A01	16	2. TxPD0 (DI8)	No	0x3001:01	0x3001:10	Input			
0x1A02	16	3. TxPD0 (DI16)	No	0x3002:01	0x3002:10	Input			
0x1A03	32	4. TxPDO (AI2 16)	No	0x3003:01	0x3003:20	Input			
0x1A04	32	5. TxPDO (AI2 BRG)	No	0x3004:01	0x3004:20	Input			
0x1A05	8	6. TXPDO (VALVES MAINTENANCE)	No	0x3005:01	0x3005:08	Input			
0x1600	16	1. RxPDO (Valves)	No	0x2000:01	0x2000:10	Output			
0x1601	16	2. RxPDO (DO8)	No	0x2001:01	0x2001:10	Output			
0x1602	16	3. RxPD0 (D016)	No	0x2002:01	0x2002:10	Output			

7.8 Dati aciclici

Mediante SDO è possibile recuperare alcune informazioni sul funzionamento dell'isola nonché impostare in fase di avvio alcuni parametri specifici dell'applicazione, o inviare opportuni comandi. Tali pacchetti contengono delle richieste di lettura o scrittura del contenuto di alcuni oggetti presenti nell'*Object Dictionary* (OD) del modulo Serie D.

7.8.1 Variabili in lettura

Le seguenti informazioni sono recuperabili mediante richieste di lettura di determinati oggetti presenti nel dizionario OD, oggetti che sono elencati nella successiva tabella. Gli oggetti con valore uguale o superiore a 0x8F00 sono presenti solo nel dizionario online.

Descrizione	OD Index	Subindex	Nome (ESI)	Dimensione	Valore
Versione firmware modulo CX4	0x100A	Manufacturer Software Version 20 byte		20 byte	Es. 1.16
Informazioni		0x01	Vendor Id	4 byte	0x00000097
generali modulo	0x1018	0x02	Product Code	4 byte	0x000000B
CA4		0x03	Revision number	4 byte	Es. 0x0000009
		0x04	Serial Number	4 byte	
		Identity Object			
		0x01	Subbases 1-8	1 byte	
		0x02	Subbases 9-16	1 byte	
Posizione valvola		0x03	Subbases 17-24	1 byte	Posizione
da sostituire per stato di salute	0x3005	0x04	Subbases 25-32	1 byte	della sottobase [nr]
troppo basso		0x05	Subbases 33-40	1 byte	פטננטם אב [ווו]
		0x06	Subbases 41-48	1 byte	

Descrizione	OD Index	Subindex	Nome (ESI)	Dimensione	Valore	
		0x07	Subbases 49-56	1 byte		
		0x08	Subbases 57-64	1 byte		
	0x8F00					
Variabili generiche modulo CX4		0x01	Voltage (Power)	2 byte	Alimentazione di potenza [dV]	
modulo CA4		0x02	Voltage (Logic)	2 byte	Alimentazione di logica [dV]	
		0x03	Temperature	2 byte	Temperatura [°C]	
	0x8F01	Valves Health Status				
Stato di salute		0x01	Coil 1	1 byte	0 ÷ 100	
elettrovalvole						
		0x80	Coil 128	1 byte		
	0x8F02	Valves Cycles				
Contatore cicli		0x01	Coil 1	4 byte	0÷232 [N° di	
elettrovalvole					cicli]	
		0x80	Coil 128	4 byte		
	0x8F03	Valves Errors				
Contatore errori		0x01	Coil 1	4 byte	0÷232 [N° di	
elettrovalvole					errori]	
		0x80	Coil 128	4 byte		

7.8.2 Comandi

I seguenti oggetti (solo dizionario online) consentono di inviare comandi all'applicazione, tramite SDO.

Descrizione	Parametro	OD index	SubIndex	Dimensione	Valore
Richiesta di mappatura	Force Enum	0x8F10	0x01	0 byte	
Reset informazioni sottobase	Reset Slaves	0x8F10	0x02	1 byte	1-64 (numero ID della sottobase da resettare)

7.8.3 Parametrizzazione moduli

I parametri dei moduli possono essere configurati, lato controllore/PLC, mediante comandi aciclici di scrittura.

Il dizionario degli oggetti EtherCAT che consente questa funzionalità (dizionario offline) è descritto nella tabella esposta qui di seguito. Nella macchina a stati EtherCAT, la ricezione dei comandi startup avviene nella fase $Pre-Operational \rightarrow Safe Operational$.

Affinché i parametri applicativi vengano effettivamente messi in atto, le seguenti condizioni devono essere verificate:

- Il parametro di testa System Start deve essere impostato al valore 1 (External).
- Il modulo non deve essere già operativo, in quanto i parametri vengono applicati solo nella fase di boot.

N.B. I parametri di sottobasi per elettrovalvole Serie D e dei moduli I/O, collegabili al modulo principale CX4, possono essere configurati anche tramite l'interfaccia utente UVIX (cap. 9).

7.8.3.1 Modulo CX4 EtherCAT

Il System Start permette alla testa CX4 di lavorare in due modalità alternative: se lasciato il valore di default (0), tutti i parametri applicativi descritti nei paragrafi successivi, pur essendo comunque trasmessi, non vengono considerati dal software del modulo CX4, che invece applicherà, al loro posto, i valori che già conserva in una propria memoria non volatile; questo perché un modulo CX4 normalmente può essere configurato non solo da PLC, ma anche per mezzo del configuratore UVIX, e quindi in tal modo si è voluta aggiungere la possibilità di non sovrascrivere un'eventuale configurazione preesistente. Se, invece, il parametro viene impostato a 1, tutta la parametrizzazione effettuata sul tool master verrà applicata dal software di testa al termine della fase di boot.

Descrizione	Parametro	OD index	SubIndex	Dimensione	Valore
Modalità uso parametri	System Start	0x8000	0x01	1 byte	External Data (1) = parametri da PLC Stored Data (0) = parametri memoria interna

7.8.3.2 Sottobasi ed elettrovalvole Serie D

Le sottobasi che gestiscono le elettrovalvole Serie D possono essere configurabili nella gestione del funzionamento di *failsafe* e nella gestione degli errori durante l'attivazione delle elettrovalvole, come descritto al paragrafo 6.1.3.

Descrizione	Parametro	OD index	SubIndex	Dimensione	Valore
Abilitazione Failsafe	Valves Fail-Safe Enable	0x8001	0x01 0x10	16 byte (1 bit per pilota)	Disabled (0) = failsafe non abilitato Enabled (1) = failsafe abilitato
Stato Failsafe	Valves Fail-Safe Status	0x8002	0x01 0x10	16 byte (1 bit per pilota)	Reset (0) = stato non attivo Set (1) = stato attivo in caso di failsafe abilitato
Gestione rientro errore pilota (interrotto e sovra-corrente)	Valves Error Enable	0x8003	0x01 0x10	8 byte (1 bit per sottobase)	Unlatched (0) = errore rientrante Latched (1) = errore non rientrante

7.8.3.3 Ingressi digitali

I parametri di configurazione per i moduli di ingressi digitale consentono di agire sia sulla logica di lettura degli ingressi (*Minimum Activation Time*), sia sulle caratteristiche temporali dei segnali letti (*Extension Time*), come descritto al paragrafo 6.2.1.

Ingressi Digitali 8 canali

Descrizione	Parametro	OD index	SubIndex	Dimensione	Valore
Polarità di un canale	DI8 Activation Mode	0x8010	0x01 0x10	16 byte (1 byte per modulo, 1 bit per canale)	High (1) = ingresso attivo alto Low (0) = ingresso attivo basso
Tempo minimo di permanenza del livello di input (filtro anti-bounce)	DI8 Minimum Activation Time	0x8011	0x01 0x10	16 byte (1 byte per modulo)	0 = filtro disattivato 1÷255 [ms]
Periodo minimo di rilettura degli ingressi	DI8 Signal Extension Time	0x8012	0x01 0x10	32 byte (2 byte per modulo)	0 = filtro disattivato 1÷1023 [ms]

Ingressi Digitali 16 canali

Descrizione	Parametro	OD index	Subindex	Dimensione	Valore
Polarità di un canale	DI16 Activation Mode	0x8020	0x01 0x10	16 byte (2 byte per modulo, 1 bit per canale)	High (1) = ingresso attivo alto Low (0) = ingresso attivo basso
Tempo minimo di permanenza del livello di input (filtro anti-bounce)	DI16 Minimum Activation Time	0x8021	0x01 0x08	8 byte (1 byte per modulo)	0 = filtro disattivato 1÷255 [ms]
Periodo minimo di rilettura degli ingressi	DI16 Signal Extension Time	0x8022	0x01 0x08	16 byte (2 byte per modulo)	0 = filtro disattivato 1÷1023 [ms]
Fonte dell'alimen- tazione di potenza*	DI16 Power Source	0x8023	0x01 0x08	8 byte (1 byte per modulo)	Internal (0) = potenza collegata a sorgente interna External (1) = potenza collegata a sorgente esterna

^{*} Parametro configurabile solo per gli ingressi digitali a 16 canali.

7.8.3.4 Uscite digitali

I parametri di configurazione dei moduli di uscita digitale possono essere suddivisi in diverse tipologie: modalità di attivazione, gestione della sicurezza con failsafe e generazione di segnali PWM, come descritto al paragrafo 6.3.1.

Uscite Digitali 8 canali

Descrizione	Parametro	OD index	SubIndex	Dimensione	Valore
Impostazioni di modulo, bit mask	DO8 Module Settings	0x8070	0x01 0x10	16 byte (1 byte per modulo)	Bit 0 = Open Load Detection (1 = Enabled, 0 = Disabled) Restanti Bit = t.b.d.
Abilitazione dei canali	DO8 Enable Output Channels			16 byte (1 byte per modulo, 1 bit per canale)	Disabled (0) = canale disabilitato Enabled (1) = canale abilitato
Impostazione tipo di canale (N/P)	DO8 Output Channels Mode	0x8072	0x01 0x10	16 byte (1 byte per modulo, 1 bit per canale)	Mode N (0) = canale di tipo N Mode P (1) = canale di tipo P
Abilitazione Failsafe	DO8 Fail Safe Enable	0x8073	0x01 0x10	16 byte (1 byte per modulo, 1 bit per canale)	Disabled (0) = failsafe non abilitato Enabled (1) = failsafe abilitato sul canale
Stato Failsafe	DO8 Fail Safe Status	0x8074	0x01 0x10	16 byte (1 byte per modulo, 1 bit per canale)	Reset (0) = stato non attivo sul canale Set (1) = stato attivo sul canale in caso di failsafe abilitato

Descrizione	Parametro	OD index	SubIndex	Dimensione	Valore
Impostazione tipo canale PWM	DO8 Pwm Channels	0x8075	0x01 0x10	16 byte (1 byte per modulo, 1 bit per canale)	ON/OFF (0) = canale on/off (no Pwm) PWM (1) = canale di tipo Pwm
Tempo di attivazione PWM	DO8 Pwm Act. Time	0x8076	0x01 0x10	16 byte (1 byte per modulo)	0÷255 [ms]
Duty cycle per canale (Configurabile se in modalità PWM)	DO8 Pwm Duty Cycle	0x8077	0x01 0x80	128 byte (1 byte per canale)	0÷100[%]

Uscite Digitali 16 canali

Descrizione	Parametro	OD index	SubIndex	Dimensione	Valore
Impostazioni di modulo, bit mask	D16 Module Settings	0x8080	0x01 0x08	8 byte (1 byte per modulo)	Bit 0 = Open Load Detection (1 = Enabled, 0 = Disabled) Restanti Bit = t.b.d.
Abilitazione dei canali	D16 Enable Output Channels	0x8081	0x8081		Disabled (0) = canale disabilitato Enabled (1) = canale abilitato
Impostazione tipo di canale (N/P)	D16 Output Channels Mode	0x8082	0x01 0x8082 0x10		Mode N (0) = canale di tipo N Mode P (1) = canale di tipo P
Abilitazione Failsafe	D16 Fail Safe Enable	0x8083	0x01 0x10	16 byte (2 byte per modulo, 1 bit per canale)	Disabled (0) = failsafe non abilitato Enabled (1) = failsafe abilitato sul canale
Stato Failsafe	D16 Fail Safe Status	0x8084	0x01 0x10	16 byte (2 byte per modulo, 1 bit per canale)	Reset (0) = stato non attivo sul canale Set (1) = stato attivo sul canale in caso di failsafe abilitato
Impostazione tipo canale PWM	D16 Pwm Channels	0x8085	0x01 0x10	16 byte (2 byte per modulo, 1 bit per canale)	ON/OFF (0) = canale on/off (no Pwm) PWM (1) = canale di tipo Pwm

Descrizione	Parametro	OD index	SubIndex	Dimensione	Valore
Tempo di attivazione PWM	D16 Pwm Act. Time	0x8086	0x01 0x08	8 byte (1 byte per modulo)	0÷255 [ms]
Duty cycle per canale (Configurabile se in modalità PWM)	D16 Pwm Duty Cycle	0x8087	0x01 0x80	128 byte (1 byte per canale)	0÷100[%]

7.8.3.5 Ingressi analogici

I parametri configurabili per i moduli di ingressi analogici sono la tipologia di ingressi, i parametri di trasmissione e i filtri da applicare agli ingressi, come descritto al paragrafo 6.4.2.

RTD

Descrizione	Parametro	OD index	Subindex	Dimensione	Valore
Tipo sensore RTD	AI-RTD Sensor Type	0x8030	0x01 0x10	16 byte (2 byte per modulo, 1 byte per canale)	0000 = non collegato 0001 = PT100 (385) 0010 = PT200 (385) 0011 = PT500 (385) 0100 = PT1000 (385) 0101 = Ni100 (618) 0110 = Ni120 (672) 0111 = Ni1000 (618) 1000 = PT100 (3926)
Numero fili RTD	AI-RTD Wires	0x8031	0x01 0x10	16 byte (2 byte per modulo, 1 byte per canale)	0 = 2 fili 1 = 3 fili 2 = 4 fili
Soglia di trasmissione scheda in unità relative 1 U = 0.1 °C	AI-RTD Sampling Threshold	0x8032	0x01 0x08	8 byte (1 byte per modulo)	0000 = disabilitato 0001 = 1 U (0.1 °C) 0010 = 2 U 0011 = 3 U 0100 = 4 U 0101 = 5 U 0110 = 10 U 0111 = 20 U 1000 = 30 U 1001 = 40 U 1010 = 80 U 1011 = 100 U 1100 = 160 U 1101 = 500 U 1111 = 2000

Descrizione	Parametro	OD index	Subindex	Dimensione	Valore
Timeout di trasmissione a soglia	AI-RTD Sampling Threshold Timeout	0x8033	0x01 0x08	8 byte (1 byte per modulo)	1÷15 s
Frequenza di trasmissione verso il master (modalità a tempo) o limite superiore di frequenza (modalità a soglia)	AI-RTD Sampling Frequency	0x8034	0x01 0x08	8 byte (1 byte per modulo)	0000 = disabilitato 0001 = 1 Hz 0010 = 2 Hz 0011 = 5 Hz 0100 = 10 Hz 0101 = 25 Hz 0110 = 50 Hz 0111 = 100 Hz 1000 = 250 Hz 1001 = 500 Hz 1010 = 1000 Hz
Lunghezza filtro a media mobile	AI-RTD FIR Length	0x8035	0x01 0x10	16 byte (2 byte per modulo, 1 byte per canale)	0÷1 = disabilitato 2÷128 [n° di tappi del filtro]

Termocoppie

Descrizione	Parametro	OD index	Subindex	Dimensione	Valore
Tipo sensore Termocoppie	AI-TH Sensor Type	0x8040	0x01 0x10	16 byte (2 byte per modulo, 1 byte per canale)	0000 = non collegato 0001 = B 0010 = E 0011 = J 0100 = K 0101 = N 0110 = R 0111 = S 1000 = T
Soglia di trasmissione scheda in unità relative 1 U = 0.1°C	AI-TH Sampling Threshold	0x8041	0x01 0x08	8 byte (1 byte per modulo)	0000 = disabilitato 0001 = 1 U (0.1 °C) 0010 = 2 U 0011 = 3 U 0100 = 4 U 0101 = 5 U 0110 = 10 U 0111 = 20 U 1000 = 30 U 1001 = 40 U 1010 = 80 U 1011 = 100 U 1100 = 160 U 1101 = 500 U 1111 = 2000 U
Timeout di trasmissione a soglia	AI-TH Sampling Threshold Timeout	0x8042	0x01 0x08	8 byte (1 byte per modulo)	1÷15 s

Descrizione	Parametro	OD index	Subindex	Dimensione	Valore
Frequenza di trasmissione verso il master (modalità a tempo) o limite superiore di frequenza (modalità a soglia)	AI-TH Sampling Frequency	0x8043	0x01 0x08	8 byte (1 byte per modulo)	0000 = disabilitato 0001 = 1 Hz 0010 = 2 Hz 0011 = 5 Hz 0100 = 10 Hz 0101 = 25 Hz 0110 = 50 Hz 0111 = 100 Hz 1000 = 250 Hz 1001 = 500 Hz 1010 = 1000 Hz
Lunghezza filtro a media mobile	AI-TH FIR Length	0x8044	0x01 0x10	16 byte (2 byte per modulo, 1 byte per canale)	0÷1 = disabilitato 2÷128 [n° di tappi del filtro]

Bridge

Descrizione	Parametro	OD index	Subindex	Dimensione	Valore
Fattore Bridge	AI-BRG Factor	0x8050	0x01 0x08	8 byte (2 byte per modulo, 1 byte per canale)	0 = non connesso 1÷255 mV/Vdc
Soglia di trasmissione scheda in unità relative 1 U = 0.1 μ V	AI-BRG Sampling Threshold	0x8051	0x01 0x04	4 byte (1 byte per modulo)	$0000 = disabilitato$ $0001 = 1 U (1 \mu V)$ $0010 = 2 U (2 \mu V)$ $0011 = 3 U$ $0100 = 4 U$ $0101 = 5 U$ $0110 = 10 U$ $0111 = 20 U$ $1000 = 30 U$ $1010 = 80 U$ $1011 = 100 U$ $1100 = 160 U$ $1101 = 500 U$ $1111 = 2000 U$
Timeout di trasmissione a soglia	AI-BRG Sampling Threshold Timeout	0x8052	0x01 0x04	4 byte (1 byte per modulo)	1÷15 s

Descrizione	Parametro	OD index	Subindex	Dimensione	Valore
Frequenza di trasmissione verso il master (modalità a tempo) o limite superiore di frequenza (modalità a soglia)	AI-BRG Sampling Frequency	0x8053	0x01 0x04	4 byte (1 byte per modulo)	0000 = disabilitato 0001 = 1 Hz 0010 = 2 Hz 0011 = 5 Hz 0100 = 10 Hz 0101 = 25 Hz 0110 = 50 Hz 0111 = 100 Hz 1000 = 250 Hz 1001 = 500 Hz 1010 = 1000 Hz
Lunghezza filtro a media mobile	AI-BRG FIR Length	0x8054	0x01 0x08	8 byte (2 byte per modulo, 1 byte per canale)	0÷1 = disabilitato 2÷128 [n° di tappi del filtro]

Tensione/Corrente

Descrizione	Parametro	OD index	Subindex	Dimensione	Valore
Tipologia ingresso V/C	AI-VC Sensor Type	0x8060	0x01 0x10	16 byte (2 byte per modulo, 1 byte per canale)	000 = non collegato 001 = 0÷10 V 010 = -10 ÷ +10 V 011 = 4÷20 mA 100 = 0÷20 mA 101 = -20 ÷ +20 mA
Soglia di trasmissione scheda in unità relative 1 U = 1 mV o 1 μ A	AI-VC Sampling Threshold	0x8061	0x01 0x08	8 byte (1 byte per modulo)	$0000 = disabilitato$ $0001 = 1 U (1 \mu V)$ $0010 = 2 U (2 \mu V)$ $0011 = 3 U$ $0100 = 4 U$ $0101 = 5 U$ $0110 = 10 U$ $0111 = 20 U$ $1000 = 30 U$ $1001 = 40 U$ $1010 = 80 U$ $1011 = 100 U$ $1101 = 500 U$ $1111 = 2000 U$
Timeout di trasmissione a soglia	AI-VC Sampling Threshold Timeout	0x8062	0x01 0x08	8 byte (1 byte per modulo)	1÷15 s

Descrizione	Parametro	OD index	Subindex	Dimensione	Valore
Frequenza di trasmissione verso il master (modalità a tempo) o limite superiore di frequenza (modalità a soglia)	AI-VC Sampling Frequency	0x8063	0x01 0x08	8 byte (1 byte per modulo)	0000 = disabilitato 0001 = 1 Hz 0010 = 2 Hz 0011 = 5 Hz 0100 = 10 Hz 0101 = 25 Hz 0110 = 50 Hz 0111 = 100 Hz 1000 = 250 Hz 1001 = 500 Hz 1010 = 1000 Hz
Lunghezza filtro a media mobile	AI-VC FIR Length	0x8064	0x01 0x10	16 byte (2 byte per modulo, 1 byte per canale)	0÷1 = disabilitato 2÷128 [n° di tappi del filtro]

7.8.3.6 Uscite analogiche

I parametri configurabili per i moduli di uscite analogiche riguardano la tipologia dei canali e la gestione del failsafe, come descritto al paragrafo 6.5.2.

Descrizione	Parametro	OD index	Subindex	Dimensione	Valore
Tipologia uscita V/C	AO Channel Config.	0x8090	0x01 0x10	16 byte (2 byte per modulo, 1 byte per canale)	0 = disabilitato 1 = 0÷10 V 2 = 0÷5 V 3 = 4÷20 mA 4 = 0÷20 mA
Abilitazione Failsafe	AO FailSafe Enable	0x8091	0x01 0x08	8 byte (1 byte per modulo, 1 bit per canale)	0 = disabilitato 1 = canale abilitato
Valore Failsafe	AO FailSafe Value	0x8092	0x01 0x10	32 byte (4 byte per modulo, 2 byte per canale)	In mV/uA: • 0÷10000 se canale 0÷10 V • 0÷5000 se canale 0÷5 V • 4000÷20000 se canale 4÷20 mA • 0÷20000 se canale 0÷20 mA

Diagnostica

La diagnostica del modulo CX4 EtherCAT è definita in tre diversi modi.

• Lo stato dei LED presenti sul CX4 o sui singoli moduli collegati (cap. 6). Nella tabella seguente è rappresentata la legenda del funzionamento tipico dei led presenti sui nostri moduli. Il colore dei led può essere differente per ogni modulo (In tabella è stato considerato un led rosso).

di diagnostica: @XX [ms/Hz] per YY [s] • XX è il tempo di ON di un lampeggio. La sequenza di lamp gio è rappresentata da uno stato di ON e uno stato di OF ugual valore.	Simbolo	Stato LED	Descrizione
LAMPEGGIANTE Il led è lampeggiante con una sequenza specificata per ogni sodi diagnostica: @XX [ms/Hz] per YY [s] • XX è il tempo di ON di un lampeggio. La sequenza di lampegio è rappresentata da uno stato di ON e uno stato di ON ugual valore. • YY è il tempo di ripetizione della sequenza di lampeggio Esempio 1: 1 lampeggio @100 ms per 2 s	0	ROSSO OFF	Il led è spento
di diagnostica: @XX [ms/Hz] per YY [s] • XX è il tempo di ON di un lampeggio. La sequenza di lamp gio è rappresentata da uno stato di ON e uno stato di OF ugual valore. • YY è il tempo di ripetizione della sequenza di lampeggio Esempio 1: 1 lampeggio @100 ms per 2 s		ROSSO ON	Il led è sempre acceso
Esempio 2: 2 lampeggi @100 ms per 2 s LAMPEGGIO 1 LAMPEGGIO 2 100ms (LED ON)		LAMPEGGIANTE	Il led è lampeggiante con una sequenza specificata per ogni stato di diagnostica: @XX [ms/Hz] per YY [s] • XX è il tempo di ON di un lampeggio. La sequenza di lampeggio è rappresentata da uno stato di ON e uno stato di OFF di ugual valore. • YY è il tempo di ripetizione della sequenza di lampeggio. Esempio 1: 1 lampeggio @100 ms per 2 s LAMPEGGIO 1 LAMPEGGIO 2 LAMPEGGIO 1 LAMPEGGIO 1 LAMPEGGIO 2

Capitolo 8 Diagnostica

- I messaggi software che vengono instradati sulla rete EtherCAT.
- L'interfaccia utente UVIX (cap. 9)

8.1 Modulo CX4

8.1.1 Nodo EtherCAT

La diagnostica di rete del nodo EtherCAT è definita dallo stato dei LED link L/A1 e link L/A2, LED RUN (led di funzionamento) e LED ERR (led di errore).

LED	Funzionamento	Descrizione		
	VERDE OFF	Il dispositivo è nello stato INIT.		
	1 lampeggio VERDE @200 ms ogni 400 ms (f = 2,5 Hz)	Il dispositivo è nello stato PRE-OPERATIONAL.		
RUN	1 lampeggio VERDE @200 ms ogni 1,2 s	Il dispositivo è nello stato SAFE-OPERATIONAL.		
	VERDE ON	Il dispositivo è nello stato OPERATIONAL.		
	ROSSO OFF	Nessun errore La comunicazione EtherCAT del dispositivo è attiva.		
	1 lampeggio ROSSO @200 ms ogni 400 ms (f = 2,5 Hz)	Errore di configurazione.		
ERR	1 lampeggio ROSSO @200 ms ogni 1,2 s	Errore di watch dog.		
	2 lampeggi ROSSO @200 ms ogni 1,4 s	Errore di comunicazione. (Cavo non collegato)		

LED	Funzionamento	Descrizione	
	VERDE OFF	Nessuna connessione alla rete EtherCAT.	
L/A1 L/A2	VERDE ON	Il dispositivo è connesso alla rete ma non c'è scamb di dati.	
	1 lampeggio VERDE @50 ms ogni 100 ms (f = 10 Hz)	Il dispositivo comunica correttamente con la rete EtherCAT.	

8.1.2 Diagnostica del sistema CX4

La diagnostica del sistema CX4 è gestita tramite il led di diagnostica SYS, dai messaggi trasmessi al controllore/PLC definiti nel protocollo EtherCAT e dalla visualizzazione sull'interfaccia UVIX.

Stato modulo ed allarmi	LED SYS	Stato diagnostico (Byte 0 stream IN)	Codice EtherCAT (Extended Error Type)	Extra Info EtherCAT	UVIX
Funzionamento normale	1 lampeggio VERDE @100 ms ogni 1 s	0x00			
Moduli I/O assenti	1 lampeggio VERDE @100 ms ogni 1 s	0x01			I/O modules absent
Elettrovalvole assenti	1 lampeggio VERDE @100 ms ogni 1 s	0x02			Valves absent
Elettrovalvola da sostituire	1 lampeggio VERDE @100 ms ogni 1 s	0x03	0xF008	Byte 1 = 1 (485 bus) Byte 2 = Board Type Byte 3 = Board Number	Valve Subbase Substitution

Stato modulo ed allarmi	LED SYS	Stato diagnostico (Byte 0 stream IN)	Codice EtherCAT (Extended Error Type)	Extra Info EtherCAT	UVIX
Errore fatale sul bus di campo	(Lampeggi alternati) 1 lampeggio VERDE @400 ms ogni 0.5 1 lampeggio ROSSO @400 ms ogni 0.5	0xF0			Fieldbus fatal error
Allarme sovratempe- ratura	ROSSO ON	0xFB	0x4201		Overheating CX4 module
Allarme sottotensione	ROSSO ON	0xFC	0x3120		Undervoltage CX4 module
Allarme errore mappatura moduli I/O	2 lampeggi ROSSO @100 ms ogni 1 s	0xFD	0xF003		Mapping I/O modules error
Allarme errore mappatura elettrovalvole	2 lampeggi ROSSO @100 ms ogni 1 s	0xFE	0xF002		Mapping valves error

Stato modulo ed allarmi	LED SYS	Stato diagnostico (Byte 0 stream IN)	Codice EtherCAT (Extended Error Type)	Extra Info EtherCAT	UVIX	
Allarme di mappatura assente	1 lampeggio ROSSO @100 ms ogni 1 s	0xFF	0xF001		Mapping absent	
Allarmi elettrovalvole o moduli I/O	3 lampeggi ROSSO @100 ms ogni 1 s	NB. Gli stati diagnostici e i codici EtherCAT e UVIX sono specificati per ogni singolo modulo nelle tabelle seguenti.				

8.1.3 Elettrovalvola da sostituire

Questa è una segnalazione di *warning* che indica che le prestazioni ottimali di almeno un'elettrovalvola sono peggiorate e non vengono garantite.

Soluzione: è suggerita la sostituzione dell'elettrovalvola interessata.

N.B. Per sapere quali elettrovalvole, componenti l'isola, sono in queste condizioni, è necessario collegarsi con l'interfaccia utente Camozzi (UVIX) e verificare le percentuali dello stato di salute delle singole elettrovalvole (par. 9.3.4).

8.1.4 Errore fatale sul bus di campo

Questo allarme può avvenire per due motivi.

- Non è stata fatta una corretta programmazione e la scheda non presente il suo MAC address.
- La versione del bus di campo caricato sulla scheda non è corretta.

Soluzione: riprogrammare la scheda con la corretta versione di firmware (par. 9.8). Se il problema persiste contattare l'assistenza Camozzi.

8.1.5 Allarme sovratemperatura

Il modulo CX4 ha raggiunto o superato la temperatura limite alla quale non viene garantito il normale funzionamento del dispositivo e, se la condizione persiste, può portare ad una rottura di qualche componente sulla scheda.

Soluzione: riavviare l'isola; se il problema persiste contattare l'assistenza Camozzi.

8.1.6 Allarme sottotensione

Il modulo CX4 è alimentato con una tensione inferiore al valore minimo accettabile; pertanto, non è garantito il funzionamento corretto del sistema.

Soluzione: verificare che il cablaggio sia corretto e che i fili siano correttamente inseriti nel connettore. Misurare che sul connettore siano fisicamente presenti le alimentazioni di logica (pin 1 e 3) e potenza (pin 2 e 5). Se il problema persiste, contattare l'assistenza Camozzi.

8.1.7 Allarme errore mappatura moduli I/O

Durante la fase di mappatura (par. 7.3), si è verificato un errore lato moduli I/O. La mappatura è fallita al primo modulo I/O che non presenta il led di diagnostica attivo.

Soluzione: ripetere la procedura di mappatura ed eventualmente sostituire il modulo I/O dove termina la mappatura (primo modulo I/O con led di diagnostica spento). Se il problema persiste, contattare l'assistenza Camozzi.

8.1.8 Allarme errore mappatura elettrovalvole

Durante la fase di mappatura (par. 7.3), si è verificato un errore lato sottobasi di elettrovalvole. La mappatura è fallita alla prima sottobase che non presenta il led di diagnostica attivo.

Soluzione: ripetere la procedura di mappatura ed eventualmente sostituire la sottobase dove termina la mappatura (prima sottobase con led di diagnostica spento). Se il problema persiste, contattare l'assistenza Camozzi.

8.1.9 Allarme di mappatura assente

Dopo la richiesta di una nuova mappatura del sistema (par. 7.3), si è verificato un errore sia lato moduli I/O che lato sottobasi di elettrovalvole. La mappatura termina al primo modulo accessorio (modulo I/O o sottobase) che non presenta il led di diagnostica attivo.

Soluzione: ripetere la procedura di mappatura ed eventualmente sostituire il modulo accessorio dove è terminata la mappatura (prima modulo accessorio con led di diagnostica spento). Se il problema persiste, contattare l'assistenza Camozzi.

8.1.10 Allarmi elettrovalvole o moduli I/O

Questi allarmi sono specifici per ogni singolo modulo accessorio. I messaggi UVIX e EtherCAT sono specificati nelle tabelle seguenti, mentre la diagnostica tramite led, presenti su ogni singolo modulo, e le soluzioni specifiche sono dettagliate al capitolo degli accessori (cap. 6).

8.2 Sottobase ed elettrovalvole Serie D

Nella seguente tabella sono riportati gli stati diagnostici delle elettrovalvole Serie D, con i rispettivi messaggi EtherCAT e la visualizzazione sull'interfaccia UVIX. Le elettrovalvole visualizzano un segnale di diagnostica tramite segnalazione a LED direttamente sulla sottobase dove sono montate. Per dettagli sulla diagnostica tramite LED e le possibili soluzioni agli allarmi riferirsi al capitolo Accessori (par. 6.1.4).

Stato modulo ed allarmi	Stato diagnostico (Byte 0 stream IN)	Codice EtherCAT (Extended Error Type)	Extra Info EtherCAT	UVIX
Configurazione Parametri	0xE6	0xF007	Byte 1 = 1 (485 bus) Byte 2 = Board Type Byte 3 = Board Number	
Sovratemperatura sottobase	0xE8	0x4202	Byte 1 = 1 (485 bus) Byte 2 = Board Type Byte 3 = Board Number	Overheating subbase
Sovratemperatura pilota (Posizione 14/12)	0xE9	0x4203	Byte 1 = 1 (485 bus) Byte 2 = Board Type Byte 3 = Board Number Byte 4 = Id pilota	Overheating coil 14/12
Sovracorrente pilota (Posizione 14/12)	0×EA	0x2320	Byte 1 = 1 (485 bus) Byte 2 = Board Type Byte 3 = Board Number Byte 4 = Id pilota	Overcurrent coil 14/12
Pilota interrotto (Posizione 14/12)	0xEB	0xF005	Byte 1 = 1 (485 bus) Byte 2 = Board Type Byte 3 = Board Number Byte 4 = Id pilota	Interrupted coil 14/12
Anomalia attivazione pilota (Posizione 14/12)	0xEC	0xF004	Byte 1 = 1 (485 bus) Byte 2 = Board Type Byte 3 = Board Number Byte 4 = Id pilota	Fault coil 14/12
Allarme di comunicazione	0xEF	0xF006	Byte 1 = 1 (485 bus) Byte 2 = Board Type Byte 3 = Board Number	Communication alarm

8.3 Modulo Ingressi Digitali

Nella seguente tabella sono riportati gli stati diagnostici degli ingressi digitali, con i rispettivi messaggi EtherCAT e la visualizzazione sull'interfaccia UVIX. Gli ingressi digitali visualizzano un segnale di diagnostica anche tramite segnalazione a LED direttamente sul modulo. Per dettagli riguardo alla diagnostica tramite LED e le possibili soluzioni agli eventuali allarmi fare riferimento al capitolo Accessori (par. 6.2.5).

Stato modulo ed allarmi	Stato diagnostico (Byte 0 stream IN)	Codice EtherCAT (Extended Error Type)	Extra Info EtherCAT	UVIX
Corto circuito sul canale n	0xDD	0x2120	Byte 1 = 2 (CAN bus) Byte 2 = Board Type Byte 3 = Board Number Byte 4 = channel id	Short circuit Group 0-3 Short circuit Group 4-7 Short circuit Group 8-11 Short circuit Group 12-15
Allarme configurazione parametri	0xDE	0xF00B	Byte 1 = 2 (CAN bus) Byte 2 = Board Type Byte 3 = Board Number	Configuration alarm
Allarme di comunicazione	0xDF	0xF00A	Byte 1 = 2 (CAN bus) Byte 2 = Board Type Byte 3 = Board Number	Communication alarm

8.4 Modulo Uscite Digitali

Nella seguente tabella sono riportati gli stati diagnostici delle uscite digitali, con i rispettivi messaggi EtherCAT e la visualizzazione sull'interfaccia UVIX. Le uscite digitali visualizzano un segnale di diagnostica tramite segnalazione a LED direttamente sul modulo. Per dettagli riguardo alla diagnostica tramite LED e le possibili soluzioni agli eventuali allarmi fare riferimento al capitolo Accessori (par. 6.2.5).

N.B. I moduli di uscita digitale a 16 canali hanno obbligatoriamente bisogno di alimentazione esterna.

Stato modulo ed allarmi	Stato diagnostico (Byte 0 stream IN)	Codice EtherCAT (Extended Error Type)	Extra Info EtherCAT	UVIX
Corto circuito sul canale n	0xCA	0x2322	Byte 1 = 2 (CAN bus) Byte 2 = Board Type Byte 3 = Board Number Byte 4 = channel id	Short Circuit Channel n
Circuito aperto sul canale n	0xCB	0x2323	Byte 1 = 2 (CAN bus) Byte 2 = Board Type Byte 3 = Board Number Byte 4 = channel id	Open Load Channel n
Sottotensione di potenza*	0xCC	0x3121	Byte 1 = 2 (CAN bus) Byte 2 = Board Type Byte 3 = Board Number	Under Voltage Power Supply
Tensione di potenza assente*	0xCD	0x3122	Byte 1 = 2 (CAN bus) Byte 2 = Board Type Byte 3 = Board Number	Zero Voltage Power Supply
Allarme configurazione parametri	0xCE	0xF011	Byte 1 = 2 (CAN bus) Byte 2 = Board Type Byte 3 = Board Number	Configuration alarm
Allarme di comunicazione	0xCF	0xF010	Byte 1 = 2 (CAN bus) Byte 2 = Board Type Byte 3 = Board Number	Communication alarm

^{*} Gli allarmi riguardanti l'alimentazione di potenza sono riferiti a quella esterna per i moduli a 16 canali.

8.5 Modulo Ingressi Analogici

Nella seguente tabella sono riportati gli stati diagnostici degli ingressi analogici, con i rispettivi messaggi EtherCAT e la visualizzazione sull'interfaccia UVIX. Gli ingressi analogici visualizzano un segnale di diagnostica tramite segnalazione a LED direttamente sul modulo. Per dettagli sulla diagnostica tramite LED e le soluzioni agli eventuali allarmi riferirsi al capitolo Accessori (par. 6.4.4).

Stato modulo ed allarmi	Stato diagnostico (Byte 0 stream IN)	Codice EtherCAT (Extended Error Type)	Extra Info EtherCAT	UVIX
Anomalia sensore sul canale 1	0xB6	0×F0A0	Byte 1 = 2 (CAN bus) Byte 2 = Board Type Byte 3 = Board Number Byte 4 = 1 (channel id)	Sensor fault channel 1
Sensore bridge mancante al canale 1	0xB7	0xF0A1	Byte 1 = 2 (CAN bus) Byte 2 = Board Type Byte 3 = Board Number Byte 4 = 1 (channel id)	Missing bridge channel 1
Errore di comunicazione dell'ADC	0xB8	0xF0A2	Byte 1 = 2 (CAN bus) Byte 2 = Board Type Byte 3 = Board Number	ADC communi- cation error
Errore tensione di logica 3.3V	0xB9	0xF0A3	Byte 1 = 2 (CAN bus) Byte 2 = Board Type Byte 3 = Board Number	RESDCDC error
Anomalia sensore sul canale 2	0×BA	0xF0A0	Byte 1 = 2 (CAN bus) Byte 2 = Board Type Byte 3 = Board Number Byte 4 = 1 (channel id)	Sensor fault channel 2
Sensore bridge mancante al canale 2	0xBB	0xF0A1	Byte 1 = 2 (CAN bus) Byte 2 = Board Type Byte 3 = Board Number Byte 4 = 1 (channel id)	Missing bridge channel 1

Stato modulo ed allarmi	Stato diagnostico (Byte 0 stream IN)	Codice EtherCAT (Extended Error Type)	Extra Info EtherCAT	UVIX
Errore di configurazione dei parametri	0xBE	0xF00D	Byte 1 = 2 (CAN bus) Byte 2 = Board Type Byte 3 = Board Number	Configuration alarm
Allarme di comunicazione	0xBF	0xF00C	Byte 1 = 2 (CAN bus) Byte 2 = Board Type Byte 3 = Board Number	Communication alarm

8.6 Modulo Uscite Analogiche

Nella seguente tabella sono riportati gli stati diagnostici delle uscite analogiche, con i rispettivi messaggi EtherCAT e la visualizzazione sull'interfaccia UVIX. Le uscite analogiche visualizzano un segnale di diagnostica tramite segnalazione a LED direttamente sul modulo. Per dettagli sulla diagnostica tramite LED e le soluzioni agli eventuali allarmi riferirsi al capitolo Accessori (par. 6.5.4).

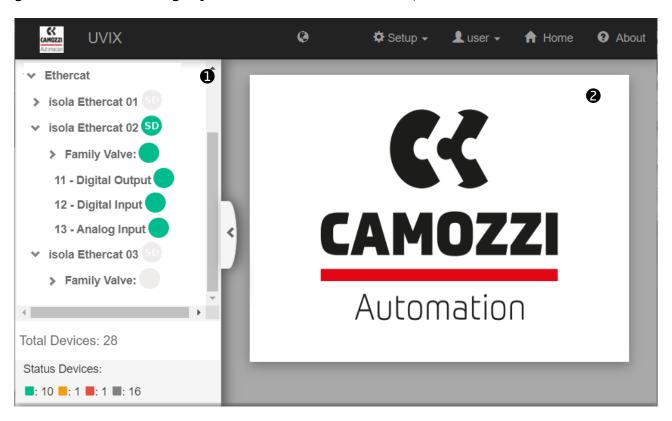
Stato modulo ed allarmi	Stato diagnostico (Byte 0 stream IN)	Codice EtherCAT (Extended Error Type)	Extra Info EtherCAT	UVIX
Errore interno	0xA9	0xF0B0	Byte 1 = 2 (CAN bus) Byte 2 = Board Type Byte 3 = Board Number	Internal Error
Circuito aperto sul canale n	0xAA	0x2325	Byte 1 = 2 (CAN bus) Byte 2 = 8 (Bridge Type) Byte 3 = Board Number Byte 4 = 2 (channel id)	Channel n Open Load
Sovratemperatura modulo	0xAB	0x4204	Byte 1 = 2 (CAN bus) Byte 2 = 8 (Bridge Type) Byte 3 = Board Number	Board Over Heating
Corto circuito tensione di alimentazione	0xAC	0x2324	Byte 1 = 2 (CAN bus) Byte 2 = 8 (Bridge Type) Byte 3 = Board Number	Power Supply Short Circuit
Sottotensione di alimentazione	0xAD	0x3123	Byte 1 = 2 (CAN bus) Byte 2 = 8 (Bridge Type) Byte 3 = Board Number	Power Supply Under Threshold
Errore di configurazione dei parametri	0xAE	0xF0B2	Byte 1 = 2 (CAN bus) Byte 2 = 8 (Bridge Type) Byte 3 = Board Number	Configuration alarm
Allarme di comunicazione	0xAF	0xF0B1	Byte 1 = 2 (CAN bus) Byte 2 = 8 (Bridge Type) Byte 3 = Board Number	Communication alarm

Uvix

9.1 Introduzione

L'ambiente proprietario Camozzi chiamato UVIX permette all'utente di monitorare e configurare tutti i dispositivi Camozzi di nuova generazione (*Camozzi Smart Device*) che supportano il collegamento ad esso. I dispositivi si possono collegare all'UVIX in due modi: connessione wireless o connessione USB. Questo sistema è stato implementato con un'architettura web-based in modo da poter accedere alle informazioni attraverso un semplice browser.

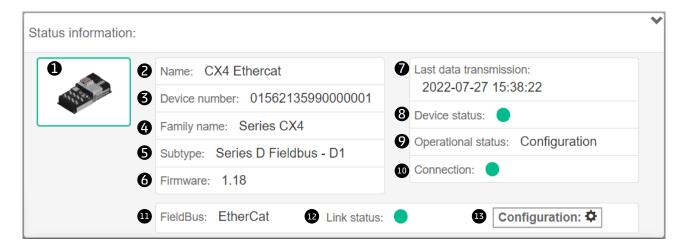
Il monitoraggio consiste nella visualizzazione di tutte le variabili del dispositivo, siano esse riguardanti il funzionamento, la diagnostica e la parametrizzazione.


Per i dettagli riguardanti l'architettura di UVIX, la sua installazione e le operazioni generali, fare riferimento al Manuale UVIX.

9.2 Informazioni generali

I dispositivi collegati all'UVIX sono visibili attraverso una struttura ad albero ① costituita da *Device Groups*, *Family* e *Devices*. Selezionando uno dei componenti è possibile visualizzare nella finestra principale ② tutte le informazioni dei vari dispositivi e poter eseguire operazioni di configurazione o comandi manuali.

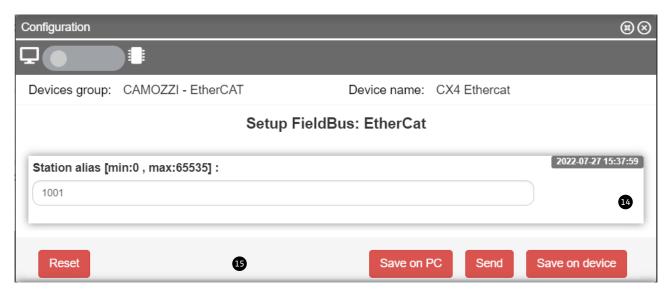
Selezionando il modulo CX4, in configurazione Stand-Alone o Isola di Valvole, oppure i singoli moduli accessori, sottobasi di elettrovalvole Serie D o moduli I/O, si possono visualizzare le informazioni generali di stato e i dettagli. Quest'ultimi sono divisi in variabili, allarmi e comandi.



9.2.1 Informazioni di stato

Selezionando un modulo Serie CX4 vengono visualizzate le informazioni principali che identificano il dispositivo ed il suo stato generale di funzionamento.

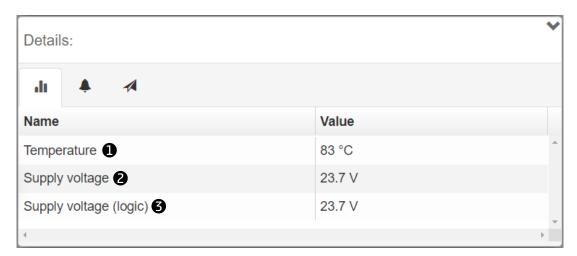
- 1 Immagine identificativa della serie Series CX4.
- 2 Nome del dispositivo, assegnata quando viene riconosciuto e aggiunto in UVIX.
- 3 Numero identificativo del dispositivo (17 caratteri).
- 4 Nome della famiglia del dispositivo: Series CX4.
- **5** Tipo di Series D Fieledbus in funzione dei moduli accessori collegati:
 - Stand-Alone, con solo moduli I/O collegati.
 - D1 con almeno una elettrovalvola Serie D1 collegata.
 - D2 con almeno una elettrovalvola Serie D2 collegata.
 - D4 con almeno una elettrovalvola Serie D4 collegata.
 - D5 con almeno una elettrovalvola Serie D1 e una Serie D2 collegate.
- 6 Versione firmware.
- Data e ora dell'ultima trasmissione tra modulo CX4 e UVIX.
- Stato generale del modulo: Not available, Ok, Alarm.
- 9 Stato operativo del modulo:
 - ullet Init o inizializzazione del modulo CX4 e dei moduli accessori.
 - Enumeration \rightarrow numerazione dei moduli accessori collegati al modulo CX4 (necessaria se vengono sostituiti o spostati dei moduli rispetto alla configurazione originale).
 - Mapping → mappatura dei moduli accessori collegati al modulo CX (necessaria per verificare che non vi siano modifiche dall'ultima configurazione del sistema).
 - Work \rightarrow funzionamento normale.
 - ullet *Manual* o funzionamento manuale.
 - ullet Configuration o configurazione dei parametri del modulo CX4 e dei moduli accessori.
 - ullet Fatal error o errore fatale che rende non operativo il modulo CX4
- 1 Stato della connessione WiFi: Online, Offline.
- **11** Bus di campo utilizzato dal modulo: EtherCAT.
- 12 Stato di comunicazione del bus di campo: Online, Offline.
- 13 Configurazione dei parametri relativi al bus di campo.



9.2.2 Configurazione rete EtherCAT

Dalla pagina delle informazioni di stato è possibile accedere alla finestra che permette di configurare alcuni parametri del bus di campo 3. Nel caso specifico del EtherCAT, è possibile configurare l'indirizzo del dispositivo sulla rete (par. 7.4).

Nella barra in basso della finestra di configurazione (15), i parametri configurati possono essere inviati al modulo, salvati sul PC, salvati sul dispositivo oppure resettati ai valori di default.



9.2.3 Variabili

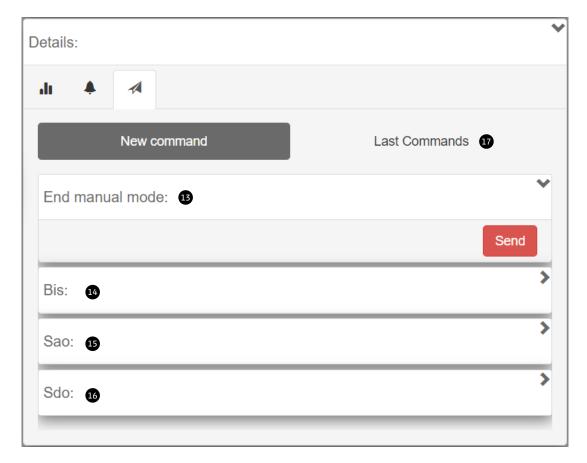
La prima scheda della pagina dei dettagli riguarda le variabili che vengono monitorate dal modulo CX4.

- 1 Temperatura interna del modulo.
- Tensione di potenza che alimenta le sottobasi delle elettrovalvole: la misura è fatta dalla prima sottobase collegata (posizione 1) e viene inviata tramite la comunicazione seriale. In assenza di valvole collegate, questa tensione non viene visualizzata.
- S Tensione di logica che alimenta la scheda elettronica del modulo. In assenza di questa tensione di alimentazione, l'intero sistema risulta non alimentato e, quindi, spento.

9.2.4 Allarmi

La seconda scheda nella pagina dei dettagli visualizza i possibili allarmi del modulo CX4.

- • Mappatura assente: indica che non vi sono moduli accessori collegati al modulo CX4.
- **6** Errore di mappatura lato valvole: può avvenire se sono state modificate le posizioni delle sottobasi delle elettrovalvole, spostandole dalla posizione originale o aggiungendone di nuove, oppure se una sottobase non risponde alla richiesta di mappatura da parte del modulo CX4.
- 6 Surriscaldamento del modulo CX4.
- Tensione di alimentazione del modulo CX4 inferiore a quella definita nelle specifiche.
- S Errore di mappatura lato moduli I/O: può avvenire se sono state modificate le posizioni dei moduli I/O, spostandoli dalla posizione originale o aggiungendone di nuovi, oppure se un modulo I/O non risponde alla richiesta di mappatura da parte del modulo CX4.
- Errore fatale sul bus di campo: avviene se lo stack del protocollo del bus di campo non è corretto.
- 10 Errore di configurazione
- Mappatura valvole assente: indica che non vi sono collegate sottobasi delle elettrovalvole al modulo CX4.
- 12 Mappatura moduli I/O assente: indica che non vi sono collegati moduli I/O al modulo CX4.



9.2.5 Comandi

La terza scheda dei dettagli del modulo CX4 comprende i comandi che possono essere inviati tramite UVIX al dispositivo. Il comando di modalità Manuale permette di controllare il sistema manualmente da UVIX, inviando dei parametri di configurazione al modulo CX4 ed ai singoli moduli accessori collegati. Quando viene impostata la modalità manuale, si potranno comandare i moduli che comprendono delle uscite (se presenti), come le elettrovalvole (par. 9.3.6), le uscite digitali (par. 9.5.5) e le uscite analogiche (par. 9.7.5). Lo storico dei comandi inviati al modulo CX4 dal momento in cui è stata avviata la comunicazione con UVIX, è visualizzabile nella lista Last Commands .

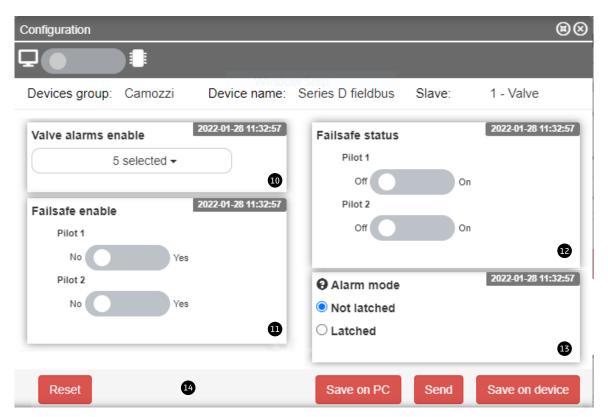
N.B. Se presenti delle sottobasi di elettrovalvole collegate al modulo CX4, sarà possibile in ogni momento, senza attivare la modalità manuale, resettare le informazioni delle valvole.

9.3 Sottobase ed elettrovalvole Serie D

9.3.1 Informazioni di stato

Nella prima pagina di UVIX, dopo aver selezionato una delle elettrovalvole collegate al modulo CX4 in configurazione di isola di valvole Serie D, sono riportate le informazioni generali della singola sottobase.

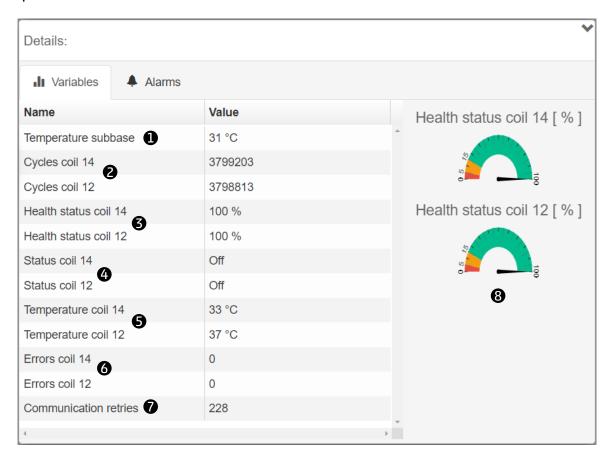
- 1 Immagini identificativa della elettrovalvola montata sulla sottobase.
- ② Posizione della sottobase nell'isola di valvole assegnata dopo l'operazione di mappatura.
- 3 Nome della famiglia del modulo accessorio: Valve.
- 4 Sottotipo della famiglia dell'elettrovalvole: 10 mm, 16 mm, 25 mm.
- **5** Versione firmware.
- 6 Data e ora dell'ultima trasmissione delle variabili tra la sottobase e UVIX.
- • Stato generale dell'elettrovalvola: Not available, Ok, Alarm.
- 8 Stato operativo della sottobase:
 - Init \rightarrow inizializzazione (mappatura e configurazione dei parametri).
 - Work \rightarrow funzionamento normale.
 - *Error* \rightarrow sottobase in errore.



9.3.2 Configurazione

Dalla pagina delle informazioni di stato è possibile configurare alcuni parametri legati al funzionamento dell'elettrovalvole **9**.

- 👽 Abilitazione degli allarmi che la valvola può generare (default: tutti gli allarmi abilitati).
- **1** Abilitazione del Failsafe per ogni singolo pilota: Yes abilitato, No disabilitato (default).
- Impostare lo stato del Failsafe per ogni pilota in cui il Failsafe è stato abilitato: *On* pilota attivato, *Off* pilata disattivato (default).
- Impostare il comportamento dell'errore di non attivazione (Fault coil) della valvola: *Latched* bloccante, *Not Latched* non bloccante (default).
- I pulsanti nella barra in fondo alla scheda permettono ai parametri di configurazione di essere inviati al modulo, salvati sul PC, salvati sul dispositivo oppure resettati ai valori di default.

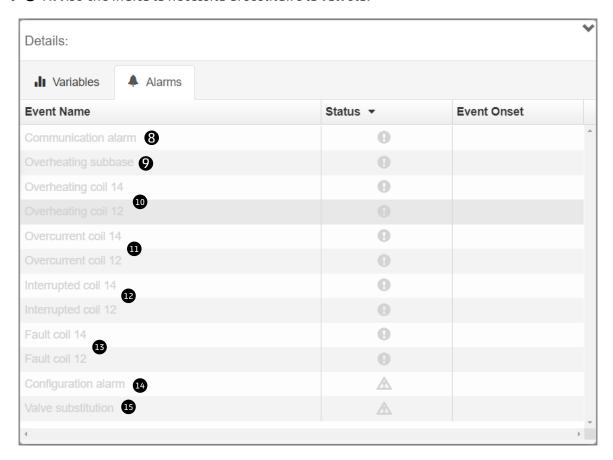


9.3.3 Dettagli

9.3.4 Variabili

La prima scheda della pagina dei dettagli riguarda le variabili che vengono monitorate dalla sottobase di una singola elettrovalvola. Queste variabili possono essere resettate attraverso i comandi selezionando il modulo CX4 alla quale le sottobasi sono collegate (par. 9.3.6).

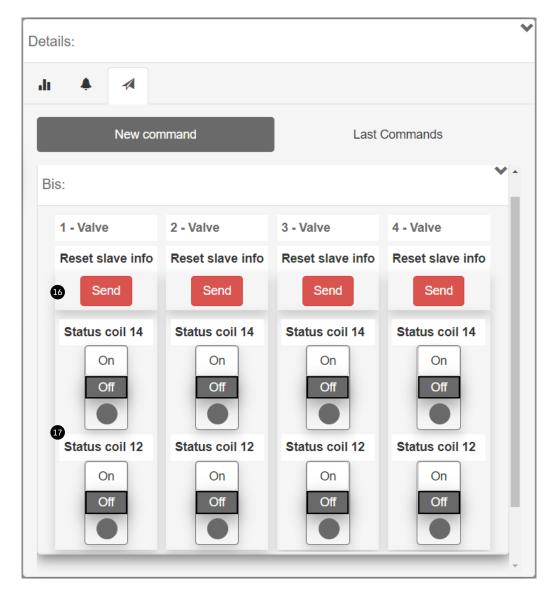
- 1 Temperatura della sottobase.
- ② Cicli effettuati dai piloti in posizione 14 e posizione 12.
- Stato di salute in percentuale dei piloti in posizione 14 e posizione 12.
- 4 Stato dei piloti in posizione 14 e posizione 12 (On/Off).
- **5** Temperatura dei piloti in posizione 14 e posizione 12.
- 6 Errori dei piloti in posizione 14 e posizione 12.
- TErrori di comunicazione tra il modulo CX4 e la singola sottobase selezionata.
- 1 Indicatori a gauge che rappresentano graficamente lo stato di salute in percentuale dei due piloti.



9.3.5 Allarmi

La seconda scheda dei dettagli visualizza gli allarmi della sottobase della valvola selezionata.

- 8 Allarme di comunicazione dovuto all'assenza di comunicazione tra modulo CX4 e sottobase.
- 9 Surriscaldamento della sottobase.
- 10 Surriscaldamento dei piloti in posizione 14 e posizione 12.
- • Sovracorrente dei piloti in posizione 14 e posizione 12.
- P Allarme di elettropiloti interrotti in posizione 14 e posizione 12.
- 13 Anomalia di energizzazione degli elettropiloti in posizione 14 e posizione 12.
- • Allarme di configurazione dei parametri della sottobase.
- 4 Avviso che indica la necessità di sostituire la valvola.



9.3.6 Comandi

Nella pagina principale del modulo CX4 (par. 9.2.5) c'è una scheda dedicata ai comandi per le elettrovalvole. In particolare, si può effettuare il reset delle informazioni della valvola (cicli, errori, stato di salute). Questa operazione è necessaria quando viene sostituita la valvola collegata alla sottobase e può essere eseguita anche in modalità di lavoro normale.

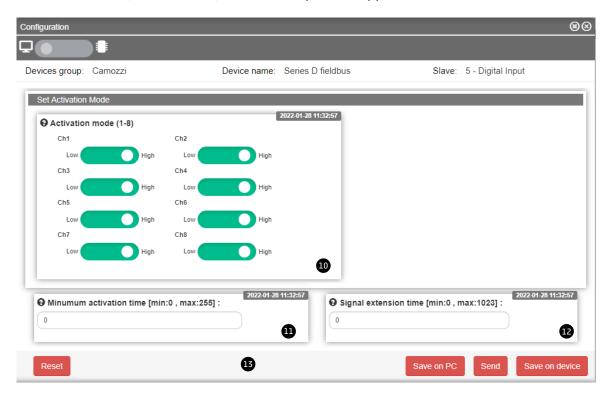
Inoltre, è possibile comandare i singoli piloti (posizione 12 e 14) delle elettrovalvole ①. Per questa operazione è necessario che l'isola sia in modalità manuale.

9.4 Modulo Ingressi Digitali

9.4.1 Informazioni di stato

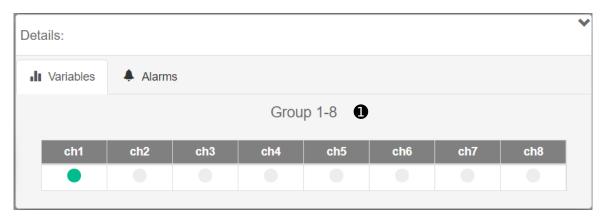
Nella prima pagina di UVIX, dopo aver selezionato uno degli ingressi digitali collegato al modulo CX4, sono riportate le informazioni generali del modulo accessorio.

- Immagini identificativa del modulo di ingressi digitale (8 o 16 canali).
- Posizione del modulo assegnata dopo l'operazione di mappatura.
- Nome della famiglia del modulo accessorio: Digital Input.
- Sottotipo della famiglia dei moduli di ingressi digitali: 8 CH, 16 CH.
- Versione firmware.
- Data e ora dell'ultima trasmissione delle variabili tra il modulo e UVIX.
- Stato generale del modulo: Not available, Ok, Alarm.
- Stato operativo del modulo:
 - ullet Init o inizializzazione (mappatura e configurazione dei parametri).
 - *Work* \rightarrow funzionamento normale.
 - *Error* \rightarrow modulo in errore.

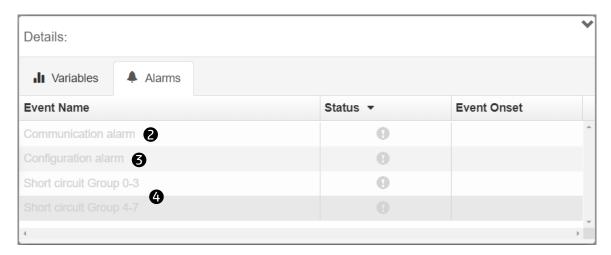


9.4.2 Configurazione

Dalla pagina delle informazioni di stato è possibile configurare alcuni parametri legati al funzionamento dei moduli di ingressi digitali **9** .


- Parametro che permette di scegliere la polarità di ciascun canale, *High* attivo alto o *Low* attivo basso (default).
- Tempo minimo di attivazione del livello di input in millisecondi (filtro anti-bounce, defualt: 0).
- 12 Tempo minimo di rilettura degli ingressi in millisecondi (default: 0).
- 1 pulsanti nella barra in fondo alla scheda permettono ai parametri di configurazione di essere inviati al modulo, salvati sul PC, salvati sul dispositivo oppure resettati ai valori di default.

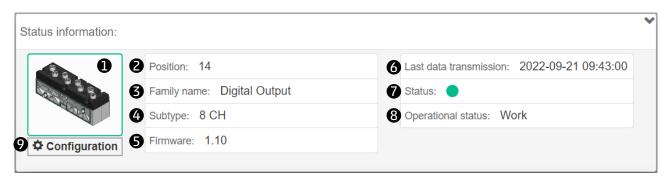
9.4.3 Variabili


La prima scheda nella pagina dei dettagli visualizza lo stato degli ingressi digitali ①: attivo, non attivo.

9.4.4 Allarmi

La seconda scheda dei dettagli visualizza gli allarmi del modulo di ingressi digitali.

- ② Allarme che indica la mancanza di comunicazione tra modulo di ingressi digitali e modulo CX4.
- **3** Allarme di configurazione dei parametri del modulo.
- Corto circuito di almeno un ingresso digitale facente parte di un gruppo di ingressi. Questo allarme può essere suddiviso in due gruppi se il modulo è da 8 canali oppure su quattro gruppi se il modulo è da 16 canali.

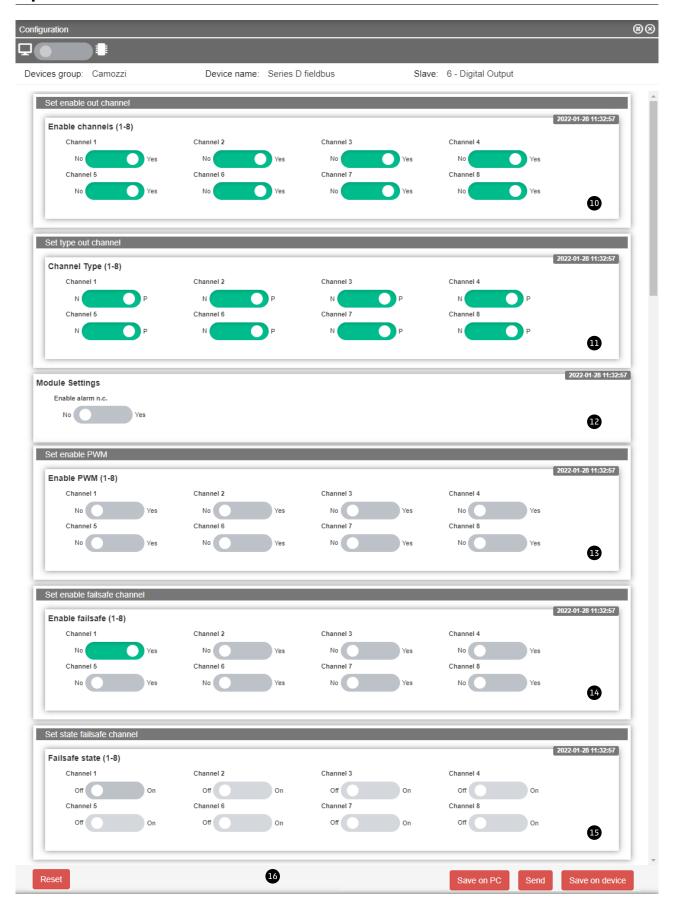


9.5 Modulo Uscite Digitali

9.5.1 Informazioni di stato

Nella prima pagina di UVIX, dopo aver selezionato uno delle uscite digitali collegate al modulo CX4, sono riportate le informazioni generali del modulo accessorio.

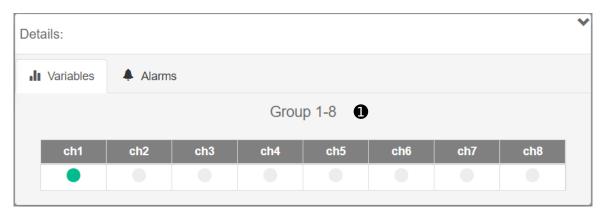
- Immagini identificativa del modulo di uscite digitale (8 o 16 canali).
- Posizione del modulo assegnata dopo l'operazione di mappatura.
- Nome della famiglia del modulo accessorio: Digital Output.
- Sottotipo della famiglia dei moduli di uscite digitali: 8 CH, 16 CH.
- Versione firmware.
- Data e ora dell'ultima trasmissione delle variabili tra il modulo e UVIX.
- Stato generale del modulo: Not available, Ok, Alarm.
- Stato operativo del modulo:
 - Init \rightarrow inizializzazione (mappatura e configurazione dei parametri).
 - *Work* \rightarrow funzionamento normale.
 - $_{\bullet}$ *Error* \rightarrow modulo in errore.


9.5.2 Configurazione

Dalla pagina delle informazioni di stato è possibile configurare alcuni parametri legati al funzionamento dei moduli di uscite digitali **9**.

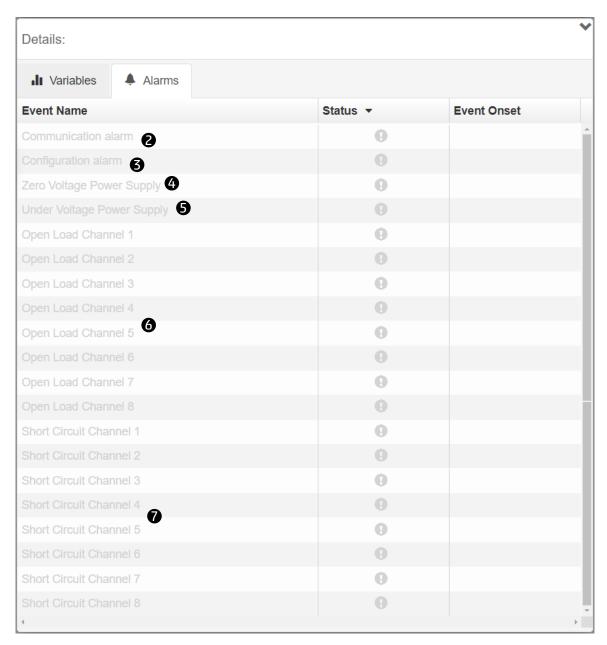
- • Abilitazione dell'uscita: No disabilitata, Yes abilitata (default).
- • Imposta il tipo del singolo canale di uscita: tipo N, tipo P (default).
- Imposta l'abilitazione per singole funzionalità legate all'intero modulo, vedi il rilevamento dell'assenza di carico da parte del driver di potenza.
- 📵 Imposta il PWM per le singole uscite: Yes abilitato, No disabilitato (default).
- 4 Abilita il failsafe di protezione, impostabile sulle singole uscite: Yes abilitato, No disabilitato (default).
- **1** Stato del failsafe, impostabile per ogni singola uscita: *On* attivato, *Off* disattivato (default).
- 1 pulsanti nella barra in fondo alla scheda permettono ai parametri di configurazione di essere inviati al modulo, salvati sul PC, salvati sul dispositivo oppure resettati ai valori di default.

Capitolo 9 Uvix



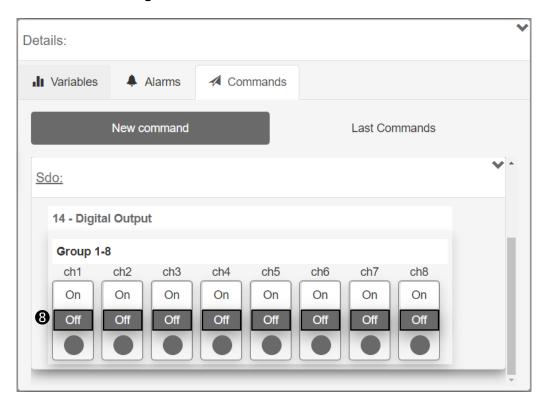
9.5.3 Variabili

La prima scheda nella pagina dei dettagli visualizza lo stato delle uscite digitali ①: attiva.



9.5.4 Allarmi

La seconda scheda dei dettagli visualizza gli allarmi del modulo di uscite digitali.


- 2 Allarme che indica la mancanza di comunicazione tra modulo di ingressi digitali e modulo CX4.
- **3** Allarme di configurazione dei parametri del modulo.
- 4 L'alimentazione esterna, necessaria per alimentare le uscite digitali, è assente.
- **5** La tensione di alimentazione è sotto la soglia dei 4.5 V.
- 6 Circuito aperto su un canale di uscita.
- Torto circuito su un canale di uscita.

9.5.5 Comandi

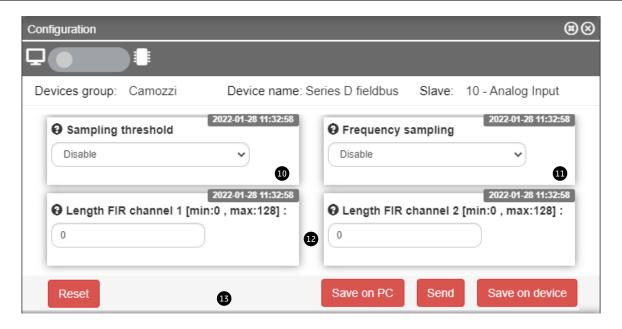
Nella pagina principale del modulo CX4 (par. 9.2.5) c'è una scheda dedicata ai comandi per pilotare i singoli canali delle uscite digitali 3. Questa scheda è visibile solo in modalità manuale e se presenta almeno un modulo di uscite digitali.

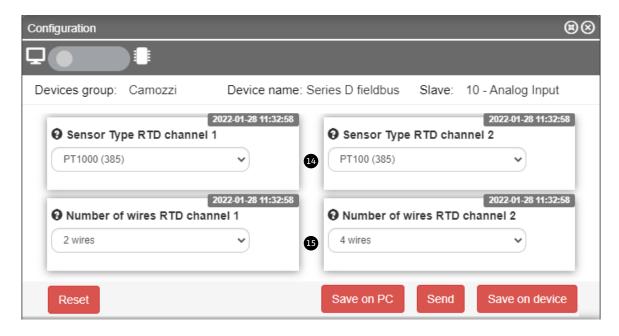
9.6 Modulo Ingressi Analogici

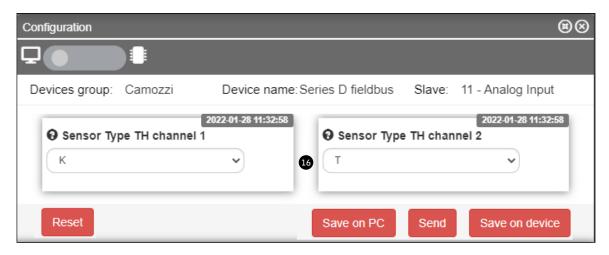
9.6.1 Informazioni di stato

Nella prima pagina di UVIX, dopo aver selezionato uno degli ingressi analogici collegato al modulo CX4, sono riportate le informazioni generali del modulo accessorio.

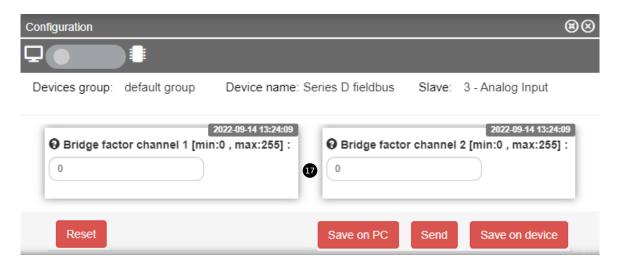
- Immagini identificativa del modulo di ingessi analogici.
- Posizione del modulo assegnata dopo l'operazione di mappatura.
- Nome della famiglia del modulo accessorio: Analog Input.
- Sottotipo della famiglia dei moduli di ingressi analogici: RTD, Thermocouple, Bridge, Voltage/Current.
- Versione firmware.
- Data e ora dell'ultima trasmissione delle variabili tra il modulo e UVIX.
- Stato generale del modulo: Not available, Ok, Alarm.
- Stato operativo del modulo:
 - Init \rightarrow inizializzazione (mappatura e configurazione dei parametri).
 - Work \rightarrow funzionamento normale.
 - *Error* \rightarrow modulo in errore.

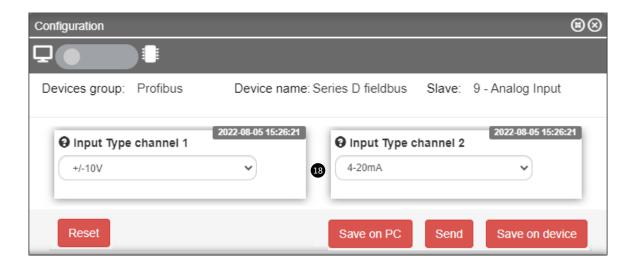

9.6.2 Configurazione

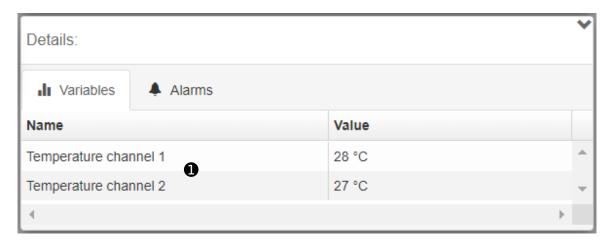

Dalla pagina delle informazioni di stato è possibile configurare alcuni parametri legati al funzionamento dei moduli di ingressi analogici **9** .

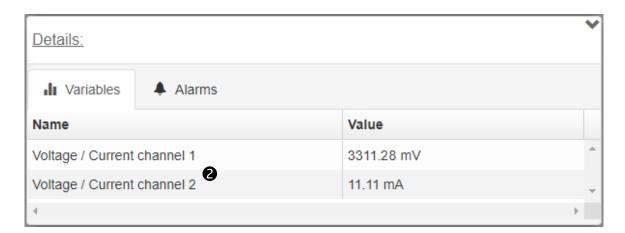

Alcuni di questi parametri sono specifici per i singoli sottotipi mentre altri sono comuni per tutti i sottotipi della famiglia degli ingessi analogici.

- **10** Abilitazione per la trasmissione a soglia (default: *Disable*).
- **1** Abilitazione per la trasmissione in frequenza (default: *Disable*).
- 12 Lunghezza della risposta all'impulso del filtro FIR sul canale 1 e sul canale 2.
- I pulsanti nella barra in fondo alla scheda permettono ai parametri di configurazione di essere inviati al modulo, salvati sul PC, salvati sul dispositivo oppure resettati ai valori di default.
- Tipo di RTD per il canale 1 e per il canale 2
- 15 Numero di fili per il sensore RTD sul canale 1 e sul canale 1.
- Tipo di Termocoppia per il canale 1 e per il canale 2.
- Tipo di Bridge per il canale 1 e per il canale 2.
- 18 Tipo di modulo Tensione/Corrente per il canale 1 e per il canale 2



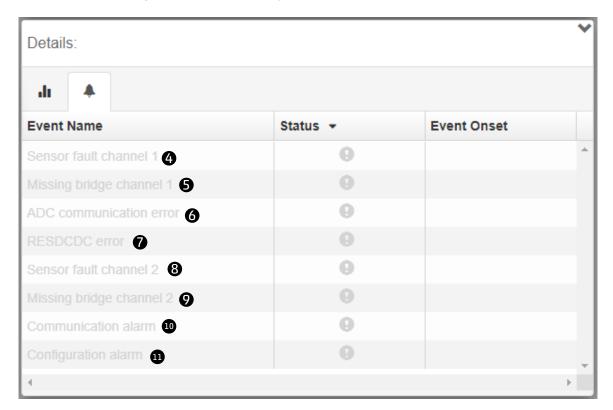






9.6.3 Variabili

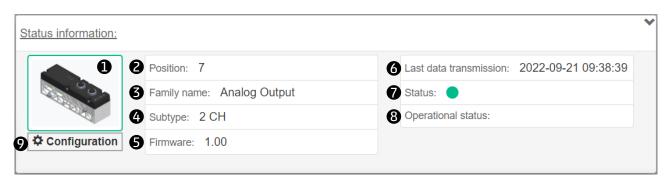
La prima scheda nella pagina dei dettagli visualizza le variabili monitorate dal modulo di ingressi analogici per entrambi i canali: temperature **1** per RTD e Termocoppie, correnti o tensioni **2** per moduli Tensioni/Correnti e tensioni **3** per i Bridge.



9.6.4 Allarmi

La seconda scheda dei dettagli visualizza gli allarmi del modulo di ingressi analogici.

- 4 Anomalia del sensore collegato al canale 1.
- **5** Sensore bridge mancante o guasto collegato al canale 1 (allarme presente solo per i bridge).
- 6 Errore di comunicazione con il convertitore ADC interno, che misura le grandezze fisiche di interesse.
- TErrore sulla tensione di alimentazione logica a 3.3V.
- 8 Anomalia del sensore collegato al canale 2.
- **9** Sensore bridge mancante o guasto collegato al canale 2 (allarme presente solo per i bridge).
- 10 Allarme di comunicazione tra il modulo di ingressi analogici e il modulo CX4.
- • Allarme di configurazione durante la parametrizzazione.

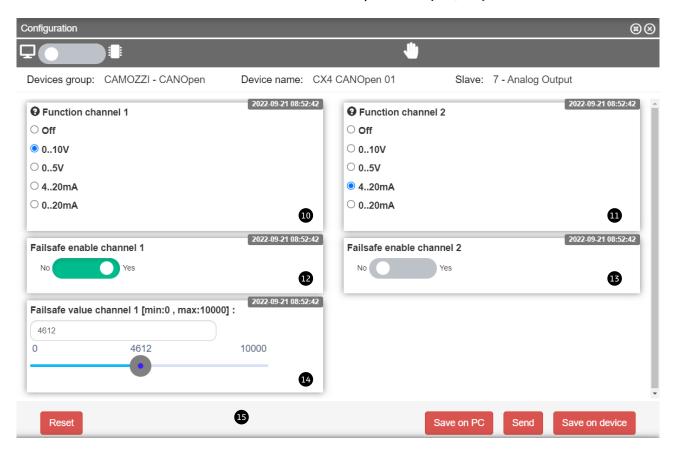


9.7 Modulo Uscite Analogiche

9.7.1 Informazioni di stato

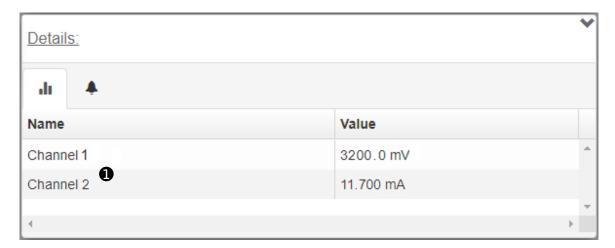
Nella prima pagina di UVIX, dopo aver selezionato uno delle uscite analogiche collegate al modulo CX4, sono riportate le informazioni generali del modulo accessorio.

- 1 Immagini identificativa del modulo di uscite analogiche.
- **2** Posizione del modulo assegnata dopo l'operazione di mappatura.
- **3** Nome della famiglia del modulo accessorio: *Analog Output*.
- 4 Sottotipo della famiglia dei moduli di uscite analogiche: 2 CH.
- **5** Versione firmware.
- 6 Data e ora dell'ultima trasmissione delle variabili tra il modulo di uscite analogiche e UVIX.
- **1** Data e ora dell'ultima trasmissione delle variabili tra il modulo e UVIX.
- 8 Stato generale del modulo: Not available, Ok, Alarm.
- 9 Stato operativo del modulo:
 - \bullet *Init* \rightarrow inizializzazione (mappatura e configurazione dei parametri).
 - Work \rightarrow funzionamento normale.
 - *Error* \rightarrow modulo in errore.

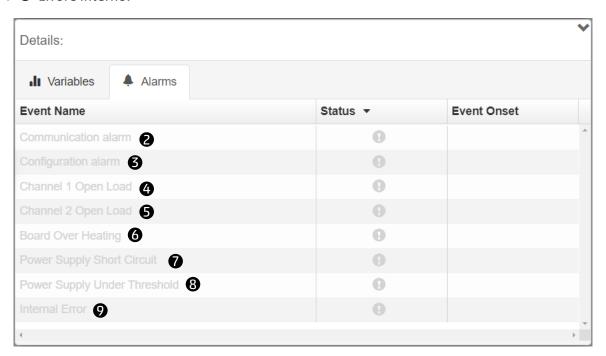


9.7.2 Configurazione

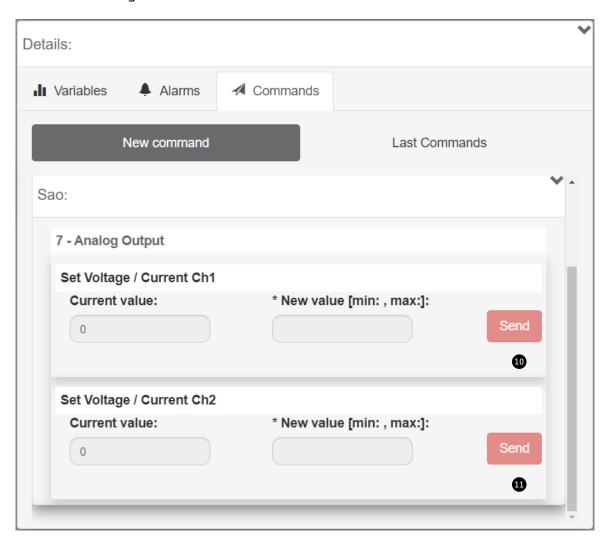
Dalla pagina delle informazioni di stato è possibile configurare alcuni parametri legati al funzionamento dei moduli di uscite digitali **9**.


- Tipologia dell'uscita analogica (tensione o corrente) sul canale 1.
- Tipologia dell'uscita analogica (tensione o corrente) sul canale 2.
- P Abilitazione Failsafe per il canale 1: Yes abilitato, No disabilitato (default).
- B Abilitazione Failsafe per il canale 2: Yes abilitato, No disabilitato (default).
- Walore del failsafe se abilitato sul canale corrispondente (mV/mA).

9.7.3 Variabili

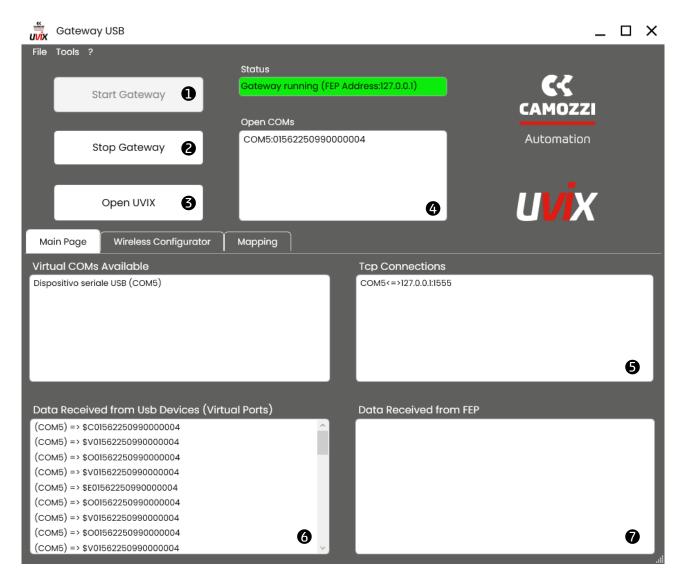

La prima scheda nella pagina dei dettagli visualizza le variabili del modulo di uscite analogiche per entrambi i canali in funzione di come sono state configurate ①.

9.7.4 Allarmi


La seconda scheda della pagina dei dettagli visualizza gli allarmi del modulo di ingressi analogici.

- **2** Allarme di comunicazione tra il modulo di uscite analogiche e il modulo CX4.
- **3** Allarme di configurazione durante la parametrizzazione.
- 4 Allarme di circuito aperto sul canale 1.
- **5** Allarme di circuito aperto sul canale 2.
- 6 Allarme di surriscaldamento del modulo di uscita analogica.
- • Allarme di corto circuito della tensione di alimentazione del modulo.
- 8 Allarme di tensione di alimentazione del modulo troppo bassa.
- 9 Errore interno.

9.7.5 Comandi

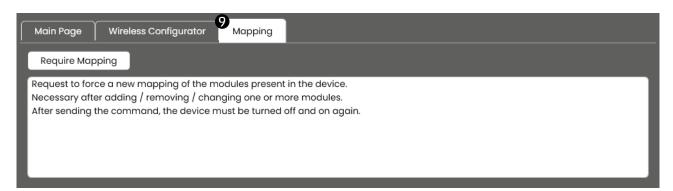


9.8 UVIX Gateway USB

Il modulo CX4 può essere collegato ad un PC attraverso un cavo USB. Con questa connessione è possibile, previa precedente installazione di UVIX sul PC, comunicare con il modulo attraverso il Camozzi Gateway USB. Per maggiori informazioni sull'utilizzo di questo strumento, consultare il Manuale UVIX.

9.8.1 Pagina principale

- • Pulsante per avviare il Gateway USB ed iniziare a comunicare con il modulo CX4.
- 2 Pulsante per fermare la comunicazione con il modulo CX4.
- **3** Pulsante per accedere all'interfaccia Browser di UVIX.
- 4 Porte COM alla quale sono collegati dei moduli CX4.
- **5** Porte COM virtuali disponibili e indirizzi della connessione TCP per le porte COM connesse.
- 6 Dati ricevuti dalla porta COM
- Dati ricevuti sul FEP del sistema UVIX.


9.8.2 Configuratore rete WiFi

Nella scheda dedicata alla configurazione della connessione WiFi **8** (se disponibile) è possibile leggere i parametri della connessione attuale ed eventualmente scriverne di nuovi per una nuova connessione.

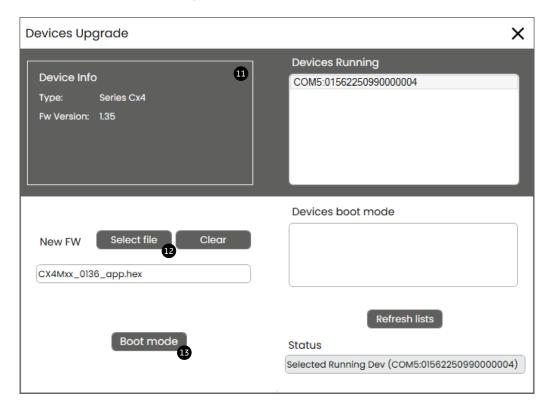
9.8.3 Mappatura

Nella ultima scheda consultabile tramite il gateway USB è possibile inviare al modulo CX4 una richiesta di mappatura. Il pulsante **9** di *Require Mapping* rimane pendente fino al prossimo riavvio del modulo CX4.

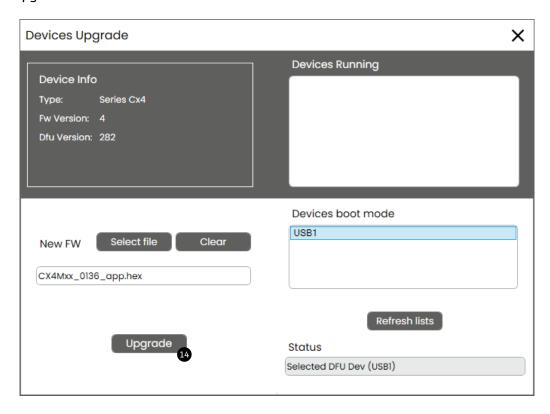
9.8.4 Aggiornamento firmware

A Prima di effettuare questa operazione è necessario contattare l'assistenza Camozzi.

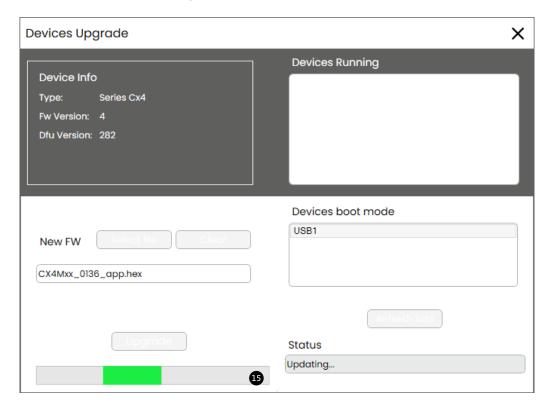
Il Gateway USB permette di aggiornare il firmware del modulo CX4 attraverso la finestra raggiungibile tramite il percorso *Tools* e *Device Firmware Upgrade (USB)* .



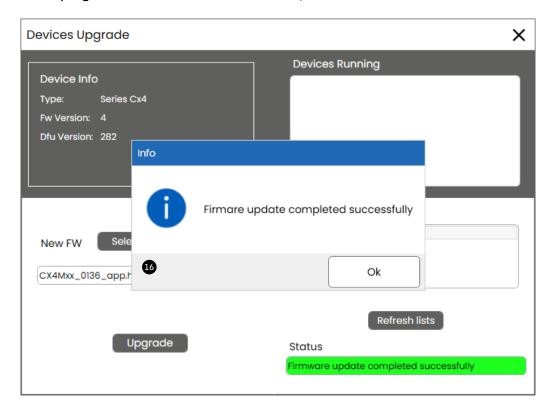
La finestra per aggiornare il firmware indica la versione attuale • e permette di selezionare il nuovo eseguibile da caricare nel modulo • . Il nome dell'eseguibile da caricare deve avere la seguente nomenclatura:


- CX4M: indica che il dispositivo è il master CX4 dell'isola di valvole.
- xx: indica il tipo di fieldbus, quindi EtherCAT \rightarrow EC.
- _0136_: indica la versione del firmware (nell'esempio la versione è 01.36).
- app.hex: terminazaione del nome del file.

Di seguito è necessario mandare il dispositivo in modalità di Boot 13.



Una volta in modalità di Boot, il modulo è pronto per caricare il nuovo firmware in memoria con il pulsante *Upgrade* .



Attendere che il nuovo firmware venga caricato 🛂 .

Al termine della programmazione del nuovo firmware, verrà visualizzata una finestra di conferma 🥨 .

9.9 Comunicazione con applicazioni esterne

UVIX permette inviare le variabili gestite ad un'applicazione esterna creata dall'utente e personalizzata in base alle proprie necessità. Per configurare questa comunicazione, fare riferimento al Manuale UVIX. Se la comunicazione è correttamente configurata, il Web Service pubblica un messaggio ogni volta che riceve una variabile dall'isola di valvole.

- TS: data e ora del messaggio inviato.
- **DevGr**: nome del gruppo di dispositivi a cui appartiene l'isola di valvole (es *Packaging Machine*).
- **DevSerNum**: numero seriale del dispositivo a 17 caratteri (es. 01302103990000035).
- **DevType**: famiglia del dispositivo \rightarrow Cx04.
- **DevName**: nome del dispositivo.
- Slvld: ID del dispositivo.
 - 0 se è una variabile del master CX4 dell'isola di valvole.
 - >=1 se è una variabile di uno slave dell'isola di valvole.
- **SlvType**: famiglia dello slave.

SlvType	Dispositivo		
Cx04	Master dell'isola di valvole		
Bis	Sottobase di elettrovalvole pneumatiche Serie D		
Sdi	Modulo di ingressi digitali		
Sdo	Modulo di uscite digitali		
Sai	Modulo di ingressi analogici		
Sao	Modulo di uscite analogiche		

• SlvName: nome dello slave. Se la variabile è del master dell'isola di valvole, il valore sarà Cx04.

• VarId: ID della variabile.

SlvType	VarId	Variabile	Unità di misura	Descrizione
Cx04	1	Firmware version	xx.xx	Versione del firmware del master CX4
	2	Temperature	°C	Temperatura interna del master CX4
	3	Supply voltage	dV	Tensione di alimentazione di potenza dell'isola di valvole
	4	Supply voltage (logic)	dV	Tensione di alimentazione di logica dell'isola di valvole
	1	Firmware version	xx.xx	Versione del firmware della sottobase
	2	Temperature subbase	°C	Temperatura interna della sottobase
	3	Cycles coil 14	nr	Cicli di attivazione del pilota (14/12)
	4	Cycles coil 12		
Bis	5	Health status coil 14	%	Stato di salute del pilota (14/12)
	6	Health status coil 12		
	7	Status coil 14	0 (OFF) 1 (ON)	Stato di attivazione del pilota (14/12)
	8	Status coil 12		
	13	Temperature coil 14	°C	Temperatura del pilota (14/12)
	14	Temperature coil 12		
	15	Errors coil 14	nr	Errori di attivazioni del pilota
	16	Errors coil 12	•••	(14/12)
	17	Communication retries	nr	Mancate risposte nella comunicazione sul protocollo 485

SlvType	Varld	Variabile	Unità di misura	Descrizione
Sdi	1	Firmware version	xx.xx	Versione del firmware del modulo di ingressi digitali
	2	Group 1-8	0bxxxxxxx	Maschera di bit degli ingressi 1-8
	3	Group 9-16	0bxxxxxxxx	Maschera di bit degli ingressi 9-16
	4	Group 17-24	0bxxxxxxxx	Maschera di bit degli ingressi 17-24
	5	Group 25-32	0bxxxxxxxx	Maschera di bit degli ingressi 25-32
Sdo	1	Firmware version	xx.xx	Versione del firmware del modulo di uscite digitali
	2	Group 1-8	0bxxxxxxxx	Maschera di bit delle uscite 1-8
	3	Group 9-16	0bxxxxxxxx	Maschera di bit delle uscite 9-16
Sai	1	Firmware version	xx.xx	Versione del firmware del modulo di ingressi analogici
	2	Temperature channel 1	°C	Temperatura misurata sul canale 1 per RTD o Termocoppie
	3	Voltage channel 1	mV	Tensione misurata sul canale 1 per Bridge
	4	Voltage / Current channel 1	mV/mA	Tensione o corrente misurata sul canale 2 per ingressi Tensione o Corrente
	5	Temperature channel 2	°C	Temperatura misurata sul canale 2 per RTD o Termocoppie

SlvType	Varid	Variabile	Unità di misura	Descrizione
	6	Voltage channel 2	mV	Tensione misurata sul canale 2 per Bridge
	7	Voltage / Current channel 2	mV/mA	Tensione o corrente misurata sul canale 1 per ingressi Tensione o Corrente
Sao	1	Firmware version	xx.xx	Versione del firmware del modulo di uscite analogiche
	2	Channel 1	mV/mA	Tensione o corrente generata sul canale 1
	3	Channel 2	mV/mA	Tensione o corrente generata sul canale 2

• **VarVal**: Valore della variabile rappresentata con il formato o le unità di misura viste nella tabella precedente.

Esempi

A seguire, alcuni esempi di messaggi inviati verso applicazioni esterne da un'isola di valvole Serie D:

- Invio della tensione di alimentazione di logica, pari a 23.9 volt, di un'isola SerieD chiamata Packaging Machine 1.
 - "TS":"2020-04-07T09:10:25", "DevGr":"default group", "DevSerNum":"01302103990000035", "DevType":"Cx04", "DevName":"Packaging Machine 1", "SlvId":0, "SlvType":"Cx04", "SlvName":"Packaging Machine 1", "VarId":4, "VarVal":"239"
- Invio del numero di cicli di attivazione effettuati dal pilota in posizione 14 (pari a 1838 cicli) di un'elettrovalvola Serie D (senza nome associato) in posizione 3 in un'isola di valvole SerieD chiamata Assembly Machine.
 - "TS":"2022-01-28T15:21:05", "DevGr":"default group", "DevSerNum":"01302103990000121", "Dev-Type":"Cx04", "DevName":"Assembly Machine", "SlvId":3, "SlvType":"Cx04", "SlvName":"Bis", "VarId":3, "VarVal":"1838"
- Invio della temperatura (pari a 23 gradi centrigradi) misurati sul canale 1 di un ingresso analogico (senza nome associato) in posizione 10 in un'isola di valvole SerieD chiamata *Test Machine*. "TS":"2023-10-01T11:59:55", "DevGr":"default group", "DevSerNum":"01302103990001002", "DevType":"Cx04", "DevName":"Test Machine", "SlvId":10, "SlvType":"Cx04", "SlvName":"Sai", "VarId":2, "VarVal":"23"

NFCamApp

10.1 Introduzione

NFCamApp è una app per smartphone (Android e IOS) che permette di comunicare, attraverso la tecnologia NFC, con il modulo CX4 per ottenere delle informazioni generali sul modulo e sull'isola di valvole (se configurata come tale). Inoltre, tramite la app è possibile eseguire operazioni di configurazione del modulo.

10.2 Pagina principale

La pagina principale della app una volta scansionato il modulo CX4, in corrispondenza dell'antenna po-

sizionata sotto il simbolo , permette di visualizzare la serie Camozzi del dispositivo (Series CX4), di assegnare un nome al dispositivo e clonare l'intera configurazione (i parametri del CX4, dei moduli IO e delle sottobasi di elettrovalvole) del sistema, sia in modalità Stand Alone che come Isola di Valvole, su di un altro sistema con modulo CX4 compatibile con lo stesso bus di campo.

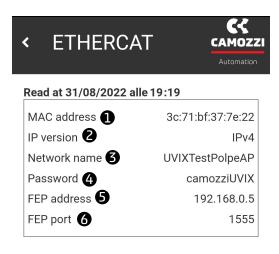
Inoltre, nella prima pagina è possibile accedere ad altre pagine della app tramite le icone in basso.

- 4 Pagina delle informazioni generali del modulo.
- **5** Pagina delle informazioni della rete WiFi (se disponibile).
- 6 Pagina delle informazioni riguardanti il bus.
- **7** Pagina per richiedere una nuova mappatura.
- 8 Condividere la configurazione di modulo e/o isola.
- **9** Salvataggio della configurazione del modulo o isola scannerizzato.

10.3 Informazioni generali

La prima pagina selezionabile visualizza delle informazioni generali sul modulo CX4 scansionato.

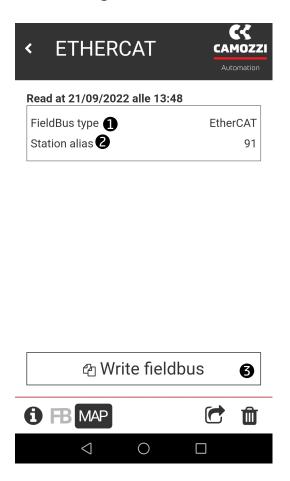
- 1 La famiglia del dispositivo: Series CX4.
- 2 Il sottotipo della famiglia del modulo CX4: Stand-alone, D1, D2, D4 e D5.
- **3** La versione del firmware.
- 4 Lo stato della connessione WiFi: Yes modulo WiFi presente, No modulo WiFi assente.
- **5** Il tipo di bus di campo: EtherCAT.
- 6 Il numero seriale composto da 17 caratteri.
- **7** La versione della app.

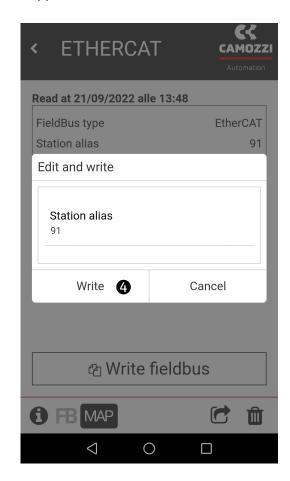


10.4 Informazioni WiFi

La pagina delle informazioni sulla connessione WiFi 🍣 è presente solo se il modulo WiFi è presente e connesso all'interno del modulo CX4, altrimenti non viene visualizzata.

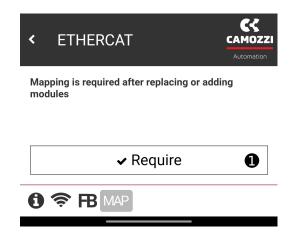
- 1 MAC address del modulo WiFi
- 2 Versione IP della connessione WiFi.
- **3** Nome della rete WiFi alla quale il dispositivo è collegato.
- 4 Password della rete WiFi.
- **5** Indirizzo FEP alla quale i dispositivi sono collegati.
- 6 Porta FEP alla quale il dispositivo è collegato.
- Pulsante per modificare i dati della rete WiFi alla quale si vuole connettere il modulo.

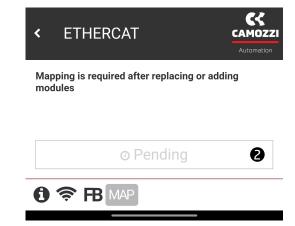




10.5 Configurazione bus di campo

La pagina delle informazioni sul protocollo EtherCAT **B** visualizza, oltre al nome del bus di campo **1**, anche l'indirizzo della rete **2** (par. 7.4). Questo parametro è configurabile utilizzando il pulsante di scrittura **3** ed eseguendo una scrittura NFC **4** tramite la app.





10.6 Richiesta di mappatura

L'ultima pagina consultabile MAP nella app permettere di richiedere una nuova mappatura del sistema attraverso il pulsante *Require* ①. Una volta fatta la richiesta, questa rimane pendente (il pulsante diventa *Pending* ②) fino al prossimo riavvio del modulo CX4.

Contatti

Camozzi Automation SpA Società Unipersonale

Via Eritrea, 20/I 25126 Brescia - Italy Tel. +39 030 37921 Fax +39 030 2400464

info@camozzi.com
www.camozzi.com

Certificazione di Prodotto

Direttive Nazionali ed Internazionali, Regolamenti e Standard productcertification@camozzi.com

Assistenza tecnica

Informazioni tecniche Informazioni sui prodotti Special products Tel.+39 030 3792390

service.camozzi@camozzi

Contatti

Camozzi Automation S.p.A.

SEDE LEGALE: Via R. Rubattino, 81 - 20134 Milano (Italy) P.IVA IT 03207930177

SEDE OPERATIVA: Via Eritrea, 20/I - 25126 Brescia (Italy) Tel. +39 03037921 | Info@camozzi.com www.camozzi.com

Assitenza clienti Tel. +39 030 3792790 service@camozzi.com

Certificazione di Prodotto Informazioni relative a certificazioni di prodotto, marcatura CE, dichiarazioni di conformità e istruzioni productcertification@camozzi.com

